
Embedded Systems
Tufts University, Spring 2024

Prof. Chang Prof. Bell Notes by Daniel Siegel
‗

May 7, 2025

‗
siegel.bio

Course Overview 1

These notes were taken by Daniel Siegel using TeXpress, Overleaf, and an

LLM-based note input tool. They document the material covered in the

Embedded Systems class at Tufts University, focusing on key concepts,

examples, and problem-solving techniques for reference and study.

Course Overview

This course provides a comprehensive understanding of embedded

systems, including:

▶ Hardware concepts: Microprocessor architectures, bus structures,

memory systems.

▶ Embedded software: Memory management, efficient hardware-

aware algorithms, real-time systems.

▶ Practical applications: Interfacing, mixing assembly and high-level

programming, interrupt systems, and I/O.

The course includes laboratory work for hands-on experience in software

and hardware design. Prerequisites: ES4 and COMP11 or instructor

permission.

Course Information

▶ Instructor: Prof. C. Hwa Chang (hchang@ece.tufts.edu), Office:

Halligan 132, Phone: (617) 627-5178.

▶ Instructor: Prof. Steven Bell (Steven.Bell@tufts.edu), Office: Halli-

gan 112, Phone: (617) 627-3217.

▶ Teaching Assistants: Led by Sam Sugarman with a team of assis-

tants for labs and office hours (details below).

▶ Class Schedule: Tuesdays and Thursdays, 3:00 PM – 4:15 PM (JCC

170).

▶ Textbook: Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C, 4th Ed., Yifeng Zhu.

Figure 1.1: Class Textbook.

▶ Course Website: Assignments, handouts, and announcements

available on Canvas: login.canvas.tufts.edu.

Topics and Schedule

The course includes the following topics:

1. Microprocessor architectures, bus structures, and memory maps.

2. Assembly programming and structured programming.

3. I/O systems, subroutines, and stacks.

4. Mixing assembly and C, interrupts, and PWM.

5. Final topics: Step motor control and embedded system applications.

mailto:hchang@ece.tufts.edu
mailto:Steven.Bell@tufts.edu
https://login.canvas.tufts.edu/

Quizzes: Weekly in-class quizzes on Thursdays; the top six scores count

towards your grade. Homework: Weekly assignments due Tuesdays;

solutions posted on Canvas. Late submissions carry penalties.

Lab and Final Project

▶ Four labs and one final project are required.

▶ Labs start the week of January 21, held in Halligan 109.

▶ Work in pairs or independently, with no partner changes without

permission.

▶ A report is required from each student, and all teams must prepare

slides to present their final projects.

Exams and Grading

Exams: Two midterms and one comprehensive final exam.

▶ Midterm 1: March 3rd, 11:50 AM – 1:20 PM.

▶ Midterm 2: March 31st, 11:50 AM – 1:20 PM.

▶ Final Exam: May 7th, 3:30 PM – 5:30 PM.

Grading Breakdown:

▶ Homework: 10%

▶ Quizzes: 10%

▶ Labs: 20%

▶ Final Project: 10%

▶ Midterms: 30% (15% each)

▶ Final Exam: 20%

Homework

Quizzes
Labs

Final Project

Midterms

Final Exam

Policies and Support

Academic Integrity: Adhere to Tufts’ Academic Integrity policies. Work

may be reviewed via TurnItIn to ensure originality. For more information,

see Tufts Academic Integrity Handbook. Health and Safety: Mask-

wearing is optional but encouraged. Updates will follow university

guidelines: Healthy@Tufts. Accommodations: Contact the StAAR Center

(StaarCenter@tufts.edu) for academic accommodations.

Additional Notes

▶ Tutoring may be available through HKNtufts@gmail.com.

▶ Study groups are highly recommended.

https://students.tufts.edu/academic-integrity
https://coronavirus.tufts.edu
mailto:StaarCenter@tufts.edu
mailto:HKNtufts@gmail.com

Introduction 2

Topics Covered in ES4 (prerequisite class)

1. Number Systems

Understanding different base systems:

▶ Base 2: Binary

▶ Base 8: Octal

▶ Base 16: Hexadecimal

2. Combinational Logic Circuits

Logic Gates:

▶ AND, OR, NOT

▶ NAND, NOR

Logic Devices:

▶ Decoder

▶ Encoder

▶ Multiplexer

3. Sequential Logic Circuits

Registers and Applications:

▶ Storage elements for data retention.

▶ Used in state machines and counters.

4. Digital Design Tools

VHDL (VHSIC Hardware Description Language):

▶ VHSIC: Very High Speed Integrated Circuits

▶ Enables the modeling and simulation of digital systems.

Types of Computers

1. Supercomputers: Used for high-performance computing applica-

tions.

2. Servers: Centralized computing resources for networks.

3. Desktop/Laptops: General-purpose computing devices.

4. Embedded Systems: Specialized computers integrated into devices.

5. Quantum Computers: Emerging technology, especially significant

for AI applications.

Fact: There are over 2.4 billion tablets and smartphones in use globally,

not including other embedded device applications.

Quantum Computers and Traditional Systems

Integration: Some quantum computers can be integrated with tradi-

tional computing systems, enhancing their versatility and computational

power.

Embedded Systems Overview

Embedded systems combine hardware and software to perform a specific

function as part of a larger system. The components of embedded systems

include:

Components of Embedded Systems

1. Embedded Hardware Design: The physical components such as

microprocessors, sensors, and actuators that enable functionality.

2. Embedded Software Design: The programming and logic imple-

mented to control hardware and execute tasks efficiently.

3. Real-Time Embedded Systems: Systems designed to process data

and respond within strict time constraints, critical for time-sensitive

applications.

4. Embedded Operating Systems: Lightweight operating systems

specifically optimized for embedded environments, managing

hardware and software resources efficiently.

Examples of Embedded Systems in Larger

Systems

Embedded systems often function as integral parts of larger systems. A

common example is the automobile, where embedded systems handle

tasks such as:

▶ Navigation systems

▶ Airbag control

▶ Traction control

▶ Climate control

▶ Audio/Video control

These subsystems improve functionality, safety, and user experience.

Embedded Real-Time Operating Systems

(RTOS)

An important feature of some embedded systems is the inclusion of an

Embedded Real-Time Operating System (RTOS). These systems ensure

precise and predictable task execution, making them vital for applications

requiring immediate responses.

Examples of Embedded Systems in Action

1. Automobiles: Embedded systems in cars handle tasks such as

airbag deployment, navigation systems, traction control, and cli-

mate control.

2. VR/AR Glasses: These rely on embedded systems to process real-

time data, track user movements, and provide immersive virtual

or augmented reality experiences.

3. Drones: Embedded systems enable navigation, flight control, ob-

stacle avoidance, and real-time video transmission.

4. Medical Devices: Examples include pacemakers, insulin pumps,

and imaging systems, which rely on embedded systems for precise

and reliable operation.

5. Amazon Warehouse Systems: Warehouses such as those using

the Kiva Picking system employ robots with embedded systems

to transport and organize packages efficiently. Amazon Robotics:

Originally developed by Kiva Systems, this technology was ac-

quired by Amazon to optimize warehouse operations globally.

Basic Computer Systems

A basic computer system consists of five main parts:

1. Arithmetic & Logic Unit (ALU) plus Register File: These form

the Data Path, responsible for performing arithmetic and logical

operations and temporarily storing data.
1

1: Processor (CPU)

2. Control Unit (CU): The Control Path manages the sequencing of

operations and controls data flow within the system.
2

2: Also Processor

3. Memory System: Stores programs (codes) and data necessary for

execution.
3

3: Programs (Codes) and Data

4. Input System: Accepts data and instructions from the outside

world for processing.
4

4: I/O System

I/O Integration and Devices
5. Output System: Displays or transmits processed data to the outside

world.
5

5: Also I/O System

Common Bus

ALU

RegFile

CU Memory Input System Output System

Building a Key in ES4

Key Concepts:

▶ Sequential: Has memory; all previous inputs count.

▶ Conditional: No memory; only present inputs count.

▶ Registers: Features include Reset, Load, Shift, and Rotate.

Figure 2.1: Registers Diagram.

Types of Registers in a CPU

1. General Purpose Registers: These registers are used for various

operations and typically act as operands in arithmetic and logical instruc-

tions.

2. Special Purpose Registers: Specialized registers designed for specific

tasks within the CPU. For example:

▶ PC (Program Counter): Points to the next instruction to be executed.

Next Instruction Location: The next instruction is stored in memory and

is fetched by the CPU as indicated by the Program Counter (PC).

Control Path

Control Path:

▶ Contains the hardware instruction logic.

▶ Decodes and manages execution of instructions fetched.

▶ Acts as an arbiter for all five parts, including itself.

▶ To generate control signals which coordinate all 5 parts, fetches

from memory.

Back to the Common Bus Diagram:

Common Bus

ALU

RegFile

CU Memory

Input System

What information required?

Output System

Signal Types

Signal Types

1. Address Signal: Sent out through the input to identify the device

for both input and output operations.

2. Data Signals: Carry the actual data being transferred between the

CPU, memory, and I/O devices.

3. Control Signals (Both Ways): Control signals from the CPU direct

device operations, while I/O devices send signals back to registers

in the CPU.

4. I/O Device Status Signal: Indicates the status of an I/O device,

such as whether it is ready, busy, or requires attention. These signals

are sent back to the CPU, not outward.

Memory Systems (From the Perspective of

System Software)

Von Neumann Architecture: Program and data share a single memory

space.

Harvard Architecture: Program and data are stored in separate memory

spaces.

Von Neumann

Programs & Data

9 bits

00000 0000

Locatio
ns

Memory Space

11111 1111

8 bits→ A byte

= 2
9 = 512

of Locations

Harvard

Program

8 bits

0000 0000

1111 1111

2
8

2 Memory Spaces

Data

Memory Systems (From the Perspective of

Hardware)

1. Volatile Memory

Memory that cannot retain information without power. Examples in-

clude:

▶ RAM (Random Access Memory): Temporary storage for active

processes.

▶ DRAM (Dynamic RAM): Typically uses capacitors to store bits of

data.

• Capacitors discharge over time, causing data loss.

• Requires periodic refreshing to maintain stored data.

▶ SRAM (Static RAM): Made of FFS (Flip-Flop Structures) instead

of capacitors.

• Does not require refreshing.

• Faster and more reliable than DRAM but more expensive.

2. Non-Volatile Memory

Memory that retains information even when power is removed. Examples

include:

▶ Flash memory (e.g., USB drives, SSDs).

▶ ROM (Read-Only Memory) and its variations (PROM, EPROM,

EEPROM).

Examples of Non-Volatile Memory

▶ ROM (Read-Only Memory): A type of memory pre-programmed

with data that cannot be modified during normal operation.

▶ PROM (Programmable ROM): Programmable once by the user

and cannot be reprogrammed or erased.
6

6: Obsolete: Out-of-Circuit Program-

ming▶ EPROM (Erasable PROM): Can be erased using UV light and

reprogrammed.
7

7: Also Obsolete

▶ EEPROM (Electrically Erasable PROM):

• Does not require physical removal for programming (in-circuit

programming).

• Commonly used in memory sticks and other flash-based

devices.

▶ Flash Memory: A type of EEPROM that programs data block by

block (typically from 64 bytes to 512 KB), unlike EEPROM, which

is programmed byte by byte.
8

8: In-Circuit Programmable

ARM and Microprocessor Basics 3

ROM Basics

In this section, we explore the fundamentals of a 4-bit decoder and its

application in Read-Only Memory (ROM).

4-Bit Decoder

A 2
𝑛 × 𝑛 decoder assigns each node a state of 0 or 1. For example, with

4 nodes and 𝑛 = 2 (using two logic gates 𝐴0 and 𝐴1), we can represent

2
2 = 4 states. If extended further to a 2

𝑛 × 2 configuration, this gives

2
2 × 2 = 8 total states across the nodes.

Figure 3.1: 4-Bit decoder.

PROM (Programmable Read-Only Memory)

A PROM matrix, illustrated to the right, consists of programmable states

at the intersections of memory lines.

Memory Layout

▶ Address Lines: 𝐴1 and 𝐴0, used to identify memory locations.

▶ Output Lines: 𝐷2, 𝐷1, and 𝐷0, represented by three OR gates at

the bottom.

Figure 3.2: PROM Matrix.

The ROM consists of 4 memory locations (referred to as "words"), which

can store the following contents:

Word Address 𝐷2 𝐷1 𝐷0

0 1 0 1

1 0 1 1

2 1 0 0

3 1 1 1

▶ Locations: 2
𝑛

locations; for 𝑛 = 2, we have 2
2 = 4 locations.

▶ Address Lines: 𝑛 lines correspond to 2
𝑛

addressable locations.

▶ Width: The width of the memory (number of 𝐷 lines) is 3 (𝐷2, 𝐷1,

𝐷0).

▶ Length: The memory length refers to the number of memory

locations (e.g., 0, 1, 2, 3).

To decode the memory addresses, an 𝑛 × 2
𝑛

decoder is required. For

𝑛 = 2, this translates to 2
2 = 4 gates.

The circuit shown is a Combinational Circuit.

Why? All outputs are determined solely by the current inputs, with no

dependency on past states.

$0000 $FFFF

RAM

(1k byte)

$03FF - $0+1

= $03FF - $0

= $400 = 0b1000000000

= 2
10

= 1k

EEPROM

(1k byte)

$0400 - $04FF

RAM

(2k bytes)
#0FFF

$0FFF - $0800+1

= $0FFF - $07FF

= $800 = 0b100000000000

= 2
11

= 2 × 2○10

= 2k

Not Used

Flash

(32k bytes)

$8000→

Width = 8 bits

1 byte

$ = Hex

(1) 1○ GNU assembler

Hex 2 = 64k

(2) 2○ ARM assembler

Hex (0x)

▶ Memory Space: 64𝑘 × 8 bits

▶ Address Bus: 16 address lines (𝐴15 − 𝐴0)

• 2
16 = 64𝑘 addressable locations

▶ Data Bus: 8 data lines

▶ Control Bus: Includes lines for:

• Write

• Read

• Additional control signals (e.g., chip select)

▶ Decoder Requirements: 16 × 2
16

decoder needed

Memory Devices

▶ RAM: Used for temporary data storage, volatile.

▶ ROM: Read-only memory, non-volatile, stores fixed instructions.

▶ Flash Memory: Non-volatile, erasable, used for firmware storage.

Total memory devices typically depend on system architecture, but these

three are commonly found in embedded systems.

Common Bus

▶ Address Bus: Identifies a piece of data in the register file,

memory, or I/O device.

▶ Data Bus: Contains instructions or data (operands).

▶ Control Bus: Contains signals which coordinate the sys-

tem’s operations.

CPU Memory I/O Device
. . .

I/O Device

I/O Interface

Data Bus

Address Bus

Control Bus

(I) Directions of lines

(II) How an instruction gets executed?

Instruction Execution Workflow

1○ Program Counter (PC): The PC holds the current address. The

CPU sends the address (content of PC) to the memory.

2○ Memory Handshake: The memory acknowledges the request

from the CPU and exchanges data.

3○ Instruction Execution: The CPU increments the PC to point

to the next instruction, executes the current instruction, and, on

certain special instructions, stores the result in the register 𝐹′
𝑓
.

4○ Special Instructions: Two special instructions:

▶ STORE: Saves a value to memory.

▶ LOAD: Retrieves a value from memory.

Bus Lines

A bus consists of several lines, which can be used for different purposes.

▶ Example:

• 8-bit data lines

• 16-bit address lines

▶ The physical lines can be multiplexed (shared) to reduce the total

number of required lines.

▶ For instance, 24 bus lines can be implemented using only 16

physical lines.

8

2-1 MUX

16

Address Lines

8

Data Lines

8

Figure 3.3: Multiplexer Diagram.

ARM: Acron RISC Machine

▶ 1981: Acron RISC Machine (ARM) introduced.

▶ 1990: Advanced RISC rebranded.

1○ RISC: Reduced Instruction Set Computer

▶ Load/Store Architecture: Operations occur only between registers.

▶ Simple Instruction Set: Optimized for fast execution and reduced

complexity.

▶ Instructions executed by 𝐹′
𝑓

(register operations).

2○ CISC: Complex Instruction Set Computer

▶ Powerful Instructions: Capable of executing powerful operations

in fewer instructions.

▶ Multiple Memory Access Methods: Offers flexibility for accessing

and manipulating memory.

Why ARM Processors?

▶ 2005: 98% of the more than one billion mobile phones sold used

ARM processors.

▶ 2009: ARM processors accounted for approximately 90% of all

embedded 32-bit RISC processors.

▶ 2010: 6.1 billion ARM-based processors sold, representing:

• 95% of smartphones

• 35% of digital televisions and set-top boxes

• 10% of mobile computers

▶ 2014: Over 50 billion ARM processors produced.

▶ 2017: 100 billion ARM processors produced.

▶ 2021: 200 billion ARM processors produced.

▶ 2024: 300 billion ARM processors produced.

▶ 2025: 100 billion AI-ready ARM processors expected. Figure 3.4: Example of an ARM chip.

▶ ADC: Analog-to-Digital Converter

▶ DAC: Digital-to-Analog Converter

▶ USART: Universal Synchronous/Asynchronous Receive/Transmit

▶ 2023: NVIDIA attempted to purchase ARM.

▶ RISC-V: An open-source platform started in 2010.

▶ 2025: Projected to reach a 1.41B dollar market.

▶ ARM Business Model: ARM sells intellectual property (IPs) and

does not manufacture IC chips.

A: Applications (performance intensive)

R: Real Time

M: Microcontroller (wide range of embedded systems)

32-bit Architecture Overview

▶ 32-bit Architecture:

• Includes 16 general-purpose registers used as operands.

• Each register is addressed using 4 bits (16→ 4 bits address).

▶ Register Usage:

• Typically, the low registers are used as operands.

• This means 3 bits are used to select the operand.

▶ Data Flow:

• Read: Data is read from registers.

• Write: Data is written to registers.

• Physically, all operations occur on the same register.

Memory Architecture 4

Memory Systems

1. Volatile:

DRAM, SRAM

2. Non-Volatile: 
RAM

PROM

EPROM

 Life: 1,000,000 writes

{
EEPROM

Flash

}
Life: 100,000 writes

Figure 4.1: Memory Diagram.

Memory

Memory is arranged as a series of "locations":

▶ Each location has a unique "address".

▶ Each location holds a byte (byte-addressable).

• e.g. The memory location at address 0x080000180 contains

the byte value 0x70, i.e., 112.

▶ The number of locations in memory is limited.

• e.g. 4GB of RAM.

• 1 Gigabyte (GB) = 2
30

bytes.

• 2
32

locations→ 4,294,967,296 locations!

▶ Values stored at each location can represent either program data

or program instructions.

• e.g. The value 0x70might be the code used to tell the processor

to add two values together.

▶ 1kilo(𝐾𝐵) = 2
10 ≈ 10

3

▶ 1mega(𝑀𝐵) = 2
20 ≈ 10

6

▶ 1giga(𝐺𝐵) = 2
30 ≈ 10

9

▶ 1tera(𝑇𝐵) = 2
40 ≈ 10

12

▶ 1peta(𝑃𝑒𝑡𝑎) = 2
50 ≈ 10

15

▶ 1exa(𝐸𝑥𝑎) = 2
60 ≈ 10

18

▶ 1zetta(𝑍𝑒𝑡𝑡𝑎) = 2
70 ≈ 10

21

Memory Notes

I. 3 Things in a Memory System

▶ 1○ Memory Address:

e.g. 32 bits

▶ 2○ Memory Location:

e.g. 8 bits

▶ 3○ Memory Contents:

e.g. $70

Memory can be represented as:

Mem[addr] e.g. Mem[0x08000180]

Updating memory contents:

Mem[addr]← 0xA2

RTL (Register Transfer Language)

R1← Mem[addr]

Location of Content depends on the content.

3. Data Units:

▶ Byte — 1 byte
▶ Half Word (Hw) — 2 bytes
▶ Word — 4 bytes
▶ Long — 8 bytes

Word: Mem[0x080001AC]← (the lowest address of the data unit)

IV. Two Ways to Store Data in Memory Figure 4.2: Big vs. Little Endian.

▶ 1○ Big Endian: The least significant byte (LSB) is stored at the

highest address.

▶ 2○ Little Endian (Small Endian): The least significant byte (LSB)

is stored at the lowest address.

Example Representation:

Mem[0x080001AC] =

{
Big Endian: 0xA00118BC

Little Endian: 0xBC1801A0

Levels of Program Code

int main(void){

int i, total = 0;

for (i = 0; i < 10; i++)

total += i;

return total;

}

C Program

MOV r0, #0

MOV r1, #0

LOOP: CMP r0, #10

BGE DONE

ADD r1, r1, r0

ADD r0, r0, #1

B LOOP

DONE: MOV r0, r1

Assembly Program

00100000 10000000

00100001 00000000

00110001 01000000

10101000 00000011

10000010 00010000

10000010 00000001

11101010 11111111

11100001 10101111

Machine Program

Compile
Assemble

High-Level Language:

* Level of abstraction closer to problem domain

* Provides for productivity and portability

Assembly Language:

* Textual representation of instructions

* ARM Assembler

* GNU Assembler

Hardware Representation:

* Binary digits (bits)

* Encoded instructions and data

Opcode Details

E○ 10111...000

NOP: No Operations NOP (No Operation) is inserted by the

assembler as a placeholder to fill unused

instruction slots.

r1← 0 Opcode: 0010 (specific operation, context-dependent)
The opcode specifies the operation the

CPU will perform. For example, 0010

might represent a move operation.
Registers: r0 ∼ r7 (3 bits):

Registers store temporary data used in

CPU instructions.

Register Details

000 Register 0

Represents register r0 in the CPU’s reg-

ister file.

001 Register 1

Represents register r1, used to hold in-

termediate values.

111 Register 7

Represents register r7, often used for

special purposes or flags.

Types of Instructions

1. 1○ Continuous: PC← PC + 4 Continuous instructions are sequentially

executed, where the program counter

(PC) increments by 4 for each instruction.

2. 2○ Branch: PC← (PC) + 4 + 2 × offset

Branch instructions allow the program

to jump to a different memory location.

The offset value determines the target

address relative to the current PC.

Refer to Appendix C & G.

Opcode: 11100
This opcode represents a branch instruc-

tion (B) where the target address is cal-

culated using an 11-bit immediate value

shifted left by 1.

B #imm11 « 1

The ‘#imm11‘ is an 11-bit immediate value

that is shifted left by 1 to calculate the

branch offset.

0*01 « 1 = 0...010

The immediate value ‘0*01‘ is shifted left

by 1, resulting in ‘0...010‘. This determines

the branch offset.

What is the offset?

Destination: ? Check: 0xA = 10

The destination PC is calculated by

adding ‘4 + 2 * offset‘ to the current PC.

10 = (PC) + 4 + 2 * offset

10 is the new PC.

Conditional Branch Details

RLT Loop: (This refers to a conditional branch loop where the condition

checks if the result is less than zero.)

Appendix G tells us:

▶ Opcode: 1101 This opcode represents a conditional

branch instruction.▶ Condition (cond): 1011 (LT, Less Than)

The condition code checks if the result is

less than zero before branching.

▶ Immediate (imm): imm

(offset is part of this immediate value.)

Branch Destination: (PC) + 4 + 2 × offset

Loop Calculation:

0xC + 4 + 2 × offset

Therefore:

offset = 12 + 4 + 2 × offset ⇒ offset = −5

The offset of −5 makes the branch loop

back to the desired memory location to

continue execution.

Two’s Complement Details

Example: imm = -5 = -00000101

= 11111011 (Two’s Complement)

Two Algorithms to Find Two’s Complement:

1. 1’s Complement + 1:

00110100 (Original)

11111010 + 1

= 11111011

2. Direct Calculation:

11001100 (Two’s Complement Result)

The two’s complement representation flips all bits (1’s complement) and

adds 1 to obtain the final binary value.

Self B Self (Assembly Code)

Appendix G tells us: Opcode: 11100, Immediate (imm11): imm11

The new program counter (PC) is calculated as:

New(PC) = PC + 4 + 2 × offset, New(PC) = 0𝑥10

Substituting:

0𝑥10 = PC + 4 + 2 × offset ⇒ offset = −2

Therefore: imm11 = -00000000 010 = 111111111 10 (Two’s comple-

ment)

Memory, I/O, and Instruction

Excecution 5

Quiz 1 Review - Number Systems and Digital

Logic

▶ Memory consists of capacitors that leak, requiring periodic refresh-

ing.

Figure 5.1: DRAM using capacitors

▶ EEPROM is a type of memory.

▶ Volatile memory loses information when power is off.

▶ Non-volatile memory retains information even without power.

▶ Harvard architecture stores instructions and data in separate mem-

ory spaces.

▶ Von Neumann architecture stores instructions and data in the same

memory space.

▶ A memory address with six hexadecimal digits corresponds to 24

bits.

▶ The memory range extends from 001000 to 0017𝐹𝐹.

▶ A half adder performs basic addition of two binary numbers.

Memory Systems and Architectures

▶ A memory system includes an address decoder and additional

logic.

▶ Memory space consists of a continuous set of memory locations.

▶ Memory devices can be either volatile or non-volatile.

▶ Memory architectures include Harvard and Von Neumann.

▶ A memory map is a diagram that shows used and unused memory

addresses.

Components of Memory Space

▶ Each memory space consists of:

• An address.

• A location.

• Content.

Figure 5.2: Memory-Mapped and Iso-

lated I/O

Memory-Mapped and Isolated I/O

▶ Memory-mapped I/O shares the same address space for memory

and I/O.

▶ Isolated I/O uses separate address spaces for memory and I/O.

Machine Code and Assembly

▶ Example instruction: ADD r1, r1, r0.

▶ Machine code representation:

• (1) DN = 1 for high register, DN = 0 for low register.

• (2) Binary representation: 00011 00 000 001 001.

Figure 5.3: Machine Code from Assem-

bly

Target vs. Host Machines

▶ Target machine: ARM Cortex-M.

▶ Host machine: Development environment.

▶ Tools used:

• Editor.

• Assembler.

• Loader.

• Linker.

• Debugger.

• Simulator.

ARM and GNU Assemblers

▶ ARM assembler is covered in textbooks and lectures.

▶ GNU assembler is used in labs.

▶ Comment syntax:

• ; for ARM assembler.

• @ for GNU assembler.

▶ Compiler assigns:

• Registers r1, r2, r3 for variables a, b, c.

• Register r0 for return value.

Number Formats and Registers

▶ Immediate data notation:

• #0x00 for ARM hexadecimal.

• #&00 for GNU.

▶ Link Register (LR) corresponds to r14.

▶ Memory access:

• Regardless of endianness, addresses always point to the lowest

byte.

• M(A) refers to either location or content, depending on context.

• M(A) ← (r1) stores a value.

• r2 ← M(A) loads a value.

Figure 5.4: Instruction Pipelining

Performance Metrics

▶ MIPS (Million Instructions Per Second).

▶ Instruction latency: 3 clock cycles per instruction.

▶ Throughput:

• Number of instructions per clock cycle:
3

5
= 0.6.

• For longer sequences, throughput approaches 1.

• Exact formula:
𝑛 instructions

𝑛+stages−1
.

• Example:
4

6
for a 32-bit instruction pipeline.

Example: Sum of an Array

▶ Variables used:

• A[10]: Array with 10 elements.

• total: Sum of elements.

• i: Loop index stored in a register.

▶ Harvard architecture is used to store instructions and data in

separate memory spaces.

▶ Two memory spaces are allocated: one for instructions and one for

data.

▶ Example instruction:

• MOVS r1, #0x00

• Opcode: 00100 r1 = 001, imm = 0

• Memory representation:

‗ M[0x8000000] = 0x00

‗ M[0x8000001] = 0x21

Figure 5.5: Memory Diagram

Instruction Behavior and

Memory Layout 6

Memory Representation

Little Endian Storage

In a little-endian system, the least significant byte (LSB) of a multi-byte

value is stored at the lowest memory address. This affects how arrays

and constants are stored in memory.

Given an array a[] starting at address 0x20000000, memory is allocated

as follows:

Offset Value Contents

0 1 a[0] (0x0001)

2 0 (blank)

4 2 a[1] (0x0002)

6 0 (blank)

8 3 a[2] (0x0003)

Each variable is stored in memory at 4-byte aligned addresses.

PC-Relative Loading Instructions

Pseudo and Machine Instructions

The instruction:

LDR r2, =total_Add

is a pseudo-instruction, meaning it is interpreted by the assembler rather

than directly executed by the hardware.

The actual machine instruction generated by the assembler is:

LDR r2, [PC, #offset]

This instruction loads a value from memory, using the program counter

(PC) as a base. The effective address is computed as:

𝑟2← 𝑚[𝑃𝐶 + 4 + 4 × offset]

Explanation:

▶ The PC value is adjusted by 4 due to pipelining.

▶ The offset is multiplied by 4 to maintain word alignment.

Instruction Encoding Structure

32 bits

MOVS LDR

Directives for Constant Definitions

underlineDCW

▶ ARM: DCW defines a 2-byte constant.

▶ GNU: .short defines the same type of 2-byte value.

▶ DCD: Used for defining a 4-byte constant (word).

Types of Instructions

Instructions can be classified into three categories:

▶ Copy Instruction: Translates directly into the same machine in-

struction.

▶ Pseudo Instruction: Depends on the assembler, which translates it

into a machine instruction.

▶ Directive: Assembler command (e.g., DCW, DCD) that does not

translate into machine instructions.

Memory Addressing

The first address in this memory system starts at:

0x20000000

Example access:

𝑚[0x20000000 + 0]

Instruction example:

r1← r1 + r0

Another load instruction using a shift operation:

LDR [_ _ _ LSR #2]

The variable total is stored at:

0x20000024

Branching and Execution Flow

NOP and Branching Behavior

NOP

null command

NOP self & self

branch back

Branching Without NOP

If NOP is removed, execution alignment may be affected.

self back x

divisible by 4

without NOP

Assembly Instruction Fields

In an assembly language instruction, there are four key fields:

▶ Label (Symbol) – This represents an identifier, such as a memory

location or loop, e.g., bop.

▶ Mnemonic – The operation to be performed, such as LDR.

▶ Operands – The values or registers involved in the instruction, e.g.,

r1 = addr.

▶ Comments – Notes for human readability, e.g., j.

Symbol Table and First Pass Processing

The assembler constructs a symbol table during its first pass through

the code. The table stores:

▶ Symbols – Identifiers (labels) found in the program.

▶ Values – Assigned memory addresses corresponding to those

symbols.

The symbol table is built following these steps:

1. Initially, the assembler sets the Location Counter (LC) to the

beginning address of the program:

𝐿𝐶 = 0𝑥00000000

2. The assembler scans each line of the program:

▶ If a symbol (label) is found, it is assigned the current value of

LC.

3. The LC is then incremented by the number of bytes occupied by

the instruction (determined from Appendix G).

4. The process continues until an END directive (for ARM assemblers)

or the equivalent termination condition in GNU assemblers.

Symbol Table

The symbol table for the given program might look as follows:

Symbol Value

loop 0x0800000

check 0x080000C

self 0x0800023

total_addr 0x0800024

∅_addr 0x0800026

Machine Code Generation

To generate machine code, the assembler references:

▶ Appendix C, G, and H for instruction encoding.

▶ Built-in assembler logic to compute immediate values.

Immediate Value (imm8) Calculation in LDR

When processing an instruction like:

LDR r2, =total_addr

The assembler must determine the appropriate imm8 (immediate value)

in the instruction encoding.

Steps to calculate imm8:

1. The assembler checks the address of total_addr in the symbol

table (e.g., 0x0800024).

2. The base register is typically the Program Counter (PC), which

points to the current instruction + 4 (due to pipelining).

3. The offset is computed as:

imm8 =
(target address − (PC + 4))

4

4. This value is encoded as an 8-bit immediate in the instruction.

This process allows the assembler to generate a valid instruction encoding

for the LDR operation.

Memory (continued) 7

Definition Context

Appendix G

0010 001 0000 0101

Fields: Opcode, Rdn, imm8

Interpretation

This 16-bit instruction consists of:

▶ Opcode: The first few bits indicate the operation being performed.

▶ Rdn: The register destination or source, depending on the instruc-

tion type.

▶ imm8: An 8-bit immediate value, typically used for operations like

loading constants or offsets.

Appendix G of Last Instruction

11100 1111 1111 110

Fields: Opcode, imm11

Interpretation

This instruction is a 16-bit immediate branch:

▶ Opcode: Identifies it as a branch instruction.

▶ imm11: An 11-bit signed immediate value, used to determine the

branch offset.

The instruction updates the program counter (PC) based on the immediate

value:

PC← PC + 8 + 2 × imm11

Explanation:

▶ The PC is incremented by 8 due to pipeline effects (fetching two

instructions ahead).

▶ The offset is computed as 2 × imm11 because ARM Thumb instruc-

tions are halfword-aligned (16-bit increments).

▶ The final value of PC determines the next instruction location.

Memory Usage Diagram

The following diagram illustrates the memory layout, indicating which

address ranges are used for volatile (RAM) and non-volatile storage

(EEPROM, Flash).

Address Range Usage

0x00000000 - 0x1FFFFFFF RAM (Volatile Memory)

0x20000000 - 0x3FFFFFFF Reserved / Peripheral Registers

0x40000000 - 0x5FFFFFFF I/O Mapped Registers

0x60000000 - 0x7FFFFFFF External Memory (if available)

0x80000000 - 0x9FFFFFFF Flash Memory (Non-Volatile)

0xA0000000 - 0xBFFFFFFF EEPROM (Non-Volatile)

0xC0000000 - 0xFFFFFFFF Reserved

Memory Classification

- Data: Stored in RAM (volatile memory), meaning it is lost when power

is removed. - Instructions: Stored in non-volatile memory, such as Flash

or EEPROM, ensuring that program code remains intact after power

cycling.

Visual Representation

To provide a better understanding, the following block diagram illustrates

how memory is structured:

RAM (Volatile)

Flash (Non-Volatile)

EEPROM (Non-Volatile)

Reserved

0x00000000

0x80000000

0xA0000000

0xC0000000

Summary

- Data is dynamically stored in RAM, which allows fast read/write access

but does not persist after shutdown. - Instructions, including firmware

and boot code, reside in non-volatile memory such as Flash or EEPROM. -

Reserved memory regions may be used for hardware registers or specific

peripheral mappings.

Data Representation 8

Bit, Byte, Half-Word, Word, Double-Word

In computing, memory is structured hierarchically, with data stored in

units of increasing size. The smallest addressable unit in most architec-

tures is the byte (8 bits), while larger data structures such as half-words

(16 bits), words (32 bits), and double-words (64 bits) are aligned based

on memory addressing rules.

The diagram below illustrates how memory addresses are incremented

based on alignment constraints. On the left ladder, each rung represents a

sequential byte address, whereas on the right ladder, addresses increase

in steps of two (for half-word alignment).

A+0

A+1

A+2

A+3

A

A+0

A+2

A+4

A

Byte Addressing Half-Word Addressing

Byte Addressing (Left Ladder)

Each memory address corresponds

to a single byte, meaning data

stored in this scheme is accessed

sequentially, increasing by 1 for

each subsequent byte. Half-Word

Addressing (Right Ladder) Half-

words (16-bit units) require align-

ment to even addresses. The mem-

ory addresses increase in steps of

two, ensuring that each half-word

starts at a properly aligned bound-

ary.

Unsigned 𝑛-bit Integers

In an unsigned 𝑛-bit integer representation, numbers are represented in

the range:

𝐴𝑛−1 , 𝐴𝑛−2 , . . . , 𝐴1 , 𝐴0

where each 𝐴𝑖 represents a binary digit (0 or 1), and the highest value is

given by:

2
𝑛 − 1

4-bit Full Adder

A full adder (FA) takes in two binary numbers and computes their sum

while propagating carry information. The diagram below represents a

4-bit adder with carry-in (𝐶𝑛), sum output (𝑆), and carry-out (𝐶𝑜).

4-bit Adder

𝐴 𝐵

𝐶𝑛 𝐶𝑜

𝑆

Carry/Borrow Flag Bit for Unsigned Numbers

▶ When adding two unsigned numbers in an 𝑛-bit system, a carry

occurs if the result exceeds the maximum unsigned integer that

can be represented, i.e., 2
𝑛 − 1.

▶ When subtracting two unsigned numbers, a borrow occurs if the

result is negative, meaning it is smaller than the smallest unsigned

integer that can be represented, i.e., 0.

▶ On ARM Cortex-M4 processors, the carry flag and the borrow flag

are physically the same flag bit in the status register (PSR, Program

Status Register).

Signed 𝑛-bit Integers

Sign-and-Magnitude One’s Complement Two’s Complement

Range [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−(2𝑛−1 − 1), 2𝑛−1 − 1] [−2
𝑛−1 , 2𝑛−1 − 1]

Zero Two zeroes (±0) Two zeroes (±0) One zero

of Numbers 2
𝑛 − 1 2

𝑛 − 1 2
𝑛

All modern computer systems use Two’s Complement (TC) representa-

tion.

Hardware for 𝐴 + 𝐵 and 𝐴 − 𝐵

Two’s complement arithmetic allows for a unified hardware implementa-

tion:

▶ Addition (𝐴 + 𝐵) follows standard binary addition rules.

▶ Subtraction (𝐴− 𝐵) is performed using two’s complement: 𝐴− 𝐵 =

𝐴 + (Two’s Complement of 𝐵).
▶ The same ALU (Arithmetic Logic Unit) can handle both operations

efficiently.

Full Adders (FAs)

A full adder computes the sum and carry-out:

Carry = 𝐶𝑛 and Overflow = 𝐶𝑛

For unsigned addition:

𝐴 + 𝐵 ≥ 2
𝑛

Two’s Complement Representation

Two’s complement allows subtraction by adding the complement of a

number:

𝐴 − 𝐵 = 𝐴 + (𝐵 + 1)

Adder/Subtractor Table

The table below summarizes the behavior of the adder/subtractor unit.

Add/Sub P(U) 𝑥𝑠
0 0 0

0 1 1

1 0 1

1 1 0

Example: 𝑛 = 4

For a 4-bit system, we examine subtraction using two’s complement.

Example 1: 2 − 1

0010 (2)

−0001 (1)

Convert −1 to Two’s Complement:

0001 (Original)

1111 (Two’s complement of 0001)

Perform Addition:

0010 (2)

+ 1111 (Two’s complement of 1)

0001

Since there is no carry-out from the most significant bit, no overflow

occurs.

Example 2: 2 − 3

0010 (2)

−0011 (3)

Convert −3 to Two’s Complement:

0011 (Original)

1101 (Two’s complement of 0011)

Perform Addition:

0010 (2)

+ 1101 (Two’s complement of 3)

1111

Overflow Analysis

𝐶𝑜 = 0, but carry into the MSB = 1⇒ Overflow Occurs

Why Does Overflow Occur?

Overflow happens when the result of an addition exceeds the

representable range of the 𝑛-bit system. In two’s complement:

▶ Overflow occurs if the sign bit changes unexpectedly.

▶ If both operands have the same sign and the result has a

different sign, overflow is present.

For 2 − 3, the expected result is −1, which should be 1111 in

two’s complement. However, since there was an incorrect carry

propagation, overflow occurs.

Summary of Overflow Rules

▶ Addition: Overflow occurs when adding two positive numbers

results in a negative number, or when adding two negative numbers

results in a positive number.

▶ Subtraction: Overflow occurs if the sign bit flips unexpectedly due

to an incorrect carry propagation.

𝑛

00...0

10...0

𝑆𝑛

Magnitude

00...0

11...1

Signed Integer Computation

In a 4-bit signed system, the most significant bit (MSB) determines the

sign:

▶ 0 → Positive number

▶ 1 → Negative number (using two’s complement)

Example 1: 2 − 3

1101 (Negative)
0010 (2)
−0011 (3)

Convert −3 to Two’s Complement:

0011 (Original)
1101 (Two’s complement of 3)

Perform Addition:

0010 (2)
+1101 (Two’s complement of 3)

1111 (−1)

Since the MSB remains 1, the result is correctly interpreted as −1, so no

overflow occurs.

Multiplication in Signed Systems

For an 𝑚-bit system, multiplying two 𝑛-bit signed numbers produces a

2𝑛-bit signed product:

n-bits × n-bits→ (2n)-bit signed product

Example 2: Signed Multiplication −1 × 2

1. Represent the numbers:

▶ −1 in 4-bit: 1111

▶ 2 in 4-bit: 0010

2. Multiply:

(−1) × 2 = −2

The product should be ‘-2‘, which in an 8-bit signed system is:

1111 1110

This demonstrates how sign extension is crucial in interpreting the

multiplication result.

—

Overflow Flag for Signed Numbers

Overflow in a signed system occurs when the result does not fit within

the representable range.

Detecting Overflow in Addition/Subtraction

Consider two 𝑛-bit signed numbers:

𝐴 = 𝐴𝑛−1𝐴𝑛−2 . . . 𝐴1𝐴0 and 𝐵 = 𝐵𝑛−1𝐵𝑛−2 . . . 𝐵1𝐵0

When we subtract:

𝐴 − 𝐵 = 𝑆𝑛−1𝑆𝑛−2 . . . 𝑆1𝑆0

Overflow occurs when:

Overflow Flag = 𝐶in ⊕ 𝐶out

Where: - 𝐶in is the carry into the most significant bit (MSB). - 𝐶out is the

carry out from the MSB.

Overflow Conditions

▶ Addition Overflow: Occurs when adding two positives results in a

negative, or when adding two negatives results in a positive.

▶ Subtraction Overflow: Occurs when the sign bit flips unexpectedly

due to an incorrect carry propagation.

Final Overflow Rule:

Overflow (Signed System) = 𝐶in ⊕ 𝐶𝑛

Where: - 𝐶in is the carry into the MSB. - 𝐶𝑛 is the carry out from the

MSB.

This equation is used in hardware to efficiently determine whether an

arithmetic operation has resulted in overflow.

Program Status Register 9

Pseudo Instructions (for Assembler)

Pseudo-instructions are assembler-level commands that are not actual

machine instructions but are translated by the assembler into valid ma-

chine instructions. They simplify programming by providing shorthand

representations.

Directives (for Assembler)

Assembler directives are commands that instruct the assembler how to

process the assembly code but do not generate machine code themselves.

They help in organizing and managing memory, defining constants, and

controlling the assembly process.

Example: Subtracting (−9) − 8 in a 5-bit System

Step 1: Determine the Binary Representation

In a 5-bit signed integer representation (Two’s Complement format):

▶ The range is −16 to +15.

▶ −9 in 5-bit two’s complement: 10111.

▶ −8 in 5-bit two’s complement: 11000.

Step 2: Perform the Subtraction

Subtracting −8 from −9 is equivalent to adding −9 and the two’s comple-

ment of −8.

1. Compute the two’s complement of −8:

Invert 11000 to 00111, then add 1 :

00111 + 1 = 01000⇒ (Two’s complement of -8)

2. Add −9 (10111) and +8 (01000):

10111

+01000

11111

Step 3: Analyze Overflow and Condition Codes

Flag Name Condition

𝑉 Overflow Flag Set if the carry into the most significant bit (MSB) differs from the carry out.

Here, carry-in = 0, carry-out = 1, so 𝑉 = 1.

𝑁 Negative Flag Set if the result’s MSB is 1, indicating a negative number.

Since there is an overflow, the result is incorrect. 𝑁 = 0.

𝑍 Zero Flag Set if the result is zero.

The result is 11111, which is not zero, so 𝑍 = 0.

𝐶 Carry Flag Set if there is a carry-out from the MSB.

The carry-out from MSB is 1, so 𝐶 = 1.

Thus, the final condition codes are:

𝑁 = 0, 𝑍 = 0, 𝐶 = 1, 𝑉 = 1

Condition Codes in the Processor Status Register

(PSR)

The Program Status Register (PSR) contains condition codes that store

the results of arithmetic operations. These are:

Bit Name Meaning (After Addition or Subtraction)

31 N (Negative) Set if the result is negative (MSB = 1).

30 Z (Zero) Set if the result is zero.

29 C (Carry) Set if there is an unsigned overflow (carry-out from MSB).

28 V (Overflow) Set if there is signed overflow (carry-in ⊕ carry-out).

CPU Does Not Know Signed or Unsigned

Numbers

The CPU itself does not inherently distinguish between signed and

unsigned numbers; it simply performs binary arithmetic. It is up to the

programmer to interpret the result correctly.

▶ Signed numbers use two’s complement representation.

▶ Unsigned numbers treat all bits as part of a positive magnitude.

▶ The condition codes help determine the correct interpretation.

Using Condition Codes for Decision Making

The processor provides conditional execution based on condition flags,

allowing efficient branching and comparisons. In many architectures

(e.g., ARM), condition codes are used to determine control flow:

▶ BEQ (Branch if Equal) → Uses Zero Flag (Z).

▶ BMI (Branch if Minus) → Uses Negative Flag (N).

▶ BCS (Branch if Carry Set) → Uses Carry Flag (C).

▶ BVS (Branch if Overflow Set) → Uses Overflow Flag (V).

Illustration of PSR

The PSR layout is as follows:

The key fields in the PSR store the condition flags and are updated after

each arithmetic operation.

Pointer Reference and

Dereference 10

Find Out String Length

Strings in C are terminated with a null character (NUL, ASCII value

0x00). You can determine the length of a string using either pointer

dereferencing or the array subscript operator.

// Using pointer dereference

int length(const char *str) {

const char *ptr = str;

while (*ptr != ’\0’) {

ptr++;

}

return ptr - str;

}

// Using array subscript

int length(const char str[]) {

int i = 0;

while (str[i] != ’\0’) {

i++;

}

return i;

}

A Brief Review of Pointers

Pointer vs. Array

A char *ptr can be used to mimic an array of characters, but there

are crucial differences in how memory is managed and how it behaves

compared to a statically declared char array[].

Accessing Elements

In both cases, elements can be accessed using the array indexing syntax:

Pointer and Array Access

ptr[i] ≡ *(ptr + i)

Reference and Dereference

▶ &a (Reference): Taking the address of an existing variable a to

assign it to a pointer variable.

▶ *p (Dereference): Accessing the value stored at the memory location

pointed to by p.

Integer Data Type

Example: Integer Memory Representation

int a = 0x1A2B3C4D;

Assume a is stored at memory location 0x20000000.

0x20000000

0x20000001

0x20000002

0x20000003

0x20000004

0x20000005

0x20000006

0x20000007

0x20000008

0x2000000A

0x2000000B

0x2000000C

0x2000000D

0x2000000E

0x2000000F

4D

3C

2B

1A

int a (4 bytes)

Pointer Example: Address and Dereferencing

1. Declaring a Pointer

1 int *p = &a;

This creates a pointer variable p that stores the memory address of a.

That means p does not hold an integer value, but rather the location in

memory where a is stored.

2. Undefined Dereference

If p is not initialized properly (i.e., not assigned a valid address), then

dereferencing it leads to undefined behavior:

1 (*p is not defined)

3. Dereferencing the Pointer

1 int c = *p;

Here, we retrieve the value stored at the address p is pointing to and

assign it to c. If p = &a, then *p == a, so this is equivalent to:

𝑐 = 𝑎

4. Pointer Arithmetic and Memory Access

1 int d = *(p + 1);

Since p is an int*, p + 1moves 4 bytes ahead (assuming sizeof(int) =

4 bytes). Thus, if p = &a and a is stored at address 0x20000000, then:

𝑝 + 1→ 0𝑥20000004

This means *(p + 1) retrieves the integer stored at 0x20000004 and

assigns it to d.

5. Visual Representation

Memory Layout (Little Endian)

1 int a = 0x1A2B3C4D;

2 int *p = &a;

3 int d = *(p + 1);

0x20000000

0x20000001

0x20000002

0x20000003

0x20000004

0x20000005

0x20000006

0x20000007

0x20000008

0x20000009

0x2000000A

0x2000000B

0x2000000C

0x2000000D

0x2000000E

4D

3C

2B

1A

Key Takeaways:

▶ *p retrieves the value stored at the address p points to.

▶ *(p + 1) accesses the next integer in memory (4 bytes ahead for

int).

▶ Accessing *(p + 1) is only valid if p is pointing to an array or

properly allocated memory.

▶ If p is uninitialized, dereferencing it (*p) leads to undefined behav-

ior.

Pointer Operations Breakdown

For Loop Structure with Pointers

A typical loop involving pointers follows these steps:

1. Initialization: Setting the pointer to the start of a string or memory

block.

2. Check the Condition: Ensuring the pointer does not exceed a

boundary or reach a terminating character.

3. Action: Performing operations on the data the pointer references.

Figure 10.1: Turning lowercase into up-

percase using using these concepts

Key Concepts

▶ Declaration: char *p; defines a pointer to a character.

▶ Initialization: p = pStr; assigns it to a string.

▶ Dereferencing: *p accesses the value stored at the pointer’s

location.

▶ Pointer Arithmetic: p++; advances to the next memory

location.

ARM Instruction Set Architecture 11

ISA (Instruction Set Architecture)

An Instruction Set Architecture (ISA) defines the supported instructions

for a specific processor. In ARM ISA, instructions fall into different

categories:

▶ Instructions for the target machine: These are the actual machine-

level operations executed by the processor.

▶ Pseudo-instructions: These are assembler-level conveniences that

simplify coding but are converted into real machine instructions.

▶ Directives: These are special commands for the assembler to assist

in organizing and defining data.

Assembler Directives

Assembler directives are used to define and allocate memory or assist in

code organization. Some common directives include:

▶ DCW – Define Constant Word (stores a 16-bit value)

▶ DCD – Define Constant Doubleword (stores a 32-bit value)

▶ EQU – Define a constant value

▶ AREA – Define a named section in memory

ARM-1: 32-bit data

26-bit address (2 trailing 0’s assumed at the end)

Memory space = 2
26 × 4 = 2

28 = 2
8 × 2

20 = 256 × 1𝑀 = 256𝑀

Figure 11.1: History of ARM Processor

Assembly Directives 12

Assembly Directives and IEEE754 Single

Precision Format

Directives are not instructions; they provide key information for the

assembler. Below are details on the IEEE754 representation and common

assembly directives.

IEEE754 Single Precision Format

The IEEE754 format encodes a floating-point number as follows:

(−1)S × 1.Mantissa × 2
(Exponent)−127

For example, consider the binary representation:

0︸︷︷︸
Sign

10000010︸ ︷︷ ︸
Exponent

1101000 . . . 0︸ ︷︷ ︸
Mantissa

▶ Sign: A 0 means a positive number.

▶ Exponent: The field 100000102 equals 13010. Subtracting the bias

(127) gives an actual exponent of 3.

▶ Mantissa: With an implicit leading 1, the normalized mantissa

is 1.1101000 . . .2. Multiplying by 2
3

shifts the binary point three

places, yielding approximately

1.1101000 . . .2 × 2
3 ≈ 1110.10002 ≈ 14.5.

S E M

1 bit 8 bits 23 bits

32 bits Single Precision

Bit 31 (MSB): 0 = +, 1 = -

Assembly Directives

AREA Make a new block of data or code.

ENTRY Declare an entry point where the program execution starts.

ALIGN Align data or code to a particular memory boundary.

DCB Allocate one or more bytes (8 bits) of data.

DCW Allocate one or more half-words (16 bits) of data.

DCD Allocate one or more words (32 bits) of data.

SPACE Allocate a zeroed block of memory with a particular size.

FILL Allocate a block of memory and fill it with a given value.

EQU Give a symbol name to a numeric constant.

RN Give a symbol name to a register.

EXPORT Declare a symbol and make it referable by other source files.

IMPORT Provide a symbol defined outside the source file.

INCLUDE/GET Include a separate source file within the source file.

PROC Declare the start of a procedure.

ENDP Designate the end of a procedure.

END Designate the end of a source file.

Example Assembly Code:

AREA myData, DATA, READWRITE ; Define a data section

Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT __main ; Make __main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC ; Start of the main procedure

... ; Assembly program starts here.

ENDP ; End of the main procedure

END ; End of the source file

Notes:

▶ The AREA directive signals the start of a new data or code section.

Each area is a basic, independent unit processed by the linker and

must have a unique name.

▶ An assembly program must have at least one code area. By default,

code areas are READONLY and data areas are READWRITE.

Mantissa Conversion Example

Given the floating-point representation:

0︸︷︷︸
Sign

10000010︸ ︷︷ ︸
Exponent

1101000 . . . 0︸ ︷︷ ︸
Mantissa

▶ Sign: 0 indicates a positive value.

▶ Exponent: 100000102 = 13010, so the actual exponent is 130−127 =

3.

▶ Mantissa: The normalized mantissa is 1.1101000 . . .2. Multiplying

by 2
3

shifts the binary point:

1.1101000 . . .2 × 2
3 ≈ 1110.10002 ≈ 14.5.

Step-by-Step Fractional Conversion:

1. Multiply the fractional part (e.g., 0.473) by 2:

0.473 × 2 ≈ 0.946.

Since 0.946 < 1, the first bit is 0.

2. Multiply the new fractional part (0.946) by 2:

0.946 × 2 ≈ 1.892.

The integer part is 1; record a bit 1 and subtract 1 to get 0.892.

3. Multiply 0.892 by 2:

0.892 × 2 ≈ 1.784.

Record a bit 1 and subtract 1 to obtain 0.784.

4. Continue this iterative process until the desired precision is reached.

This method constructs the binary fraction used in the mantissa field of

the IEEE754 format.

Directive: ENTRY

The ENTRY directive marks the very first instruction to be executed within

an application program. It is essential because it defines the program’s

entry point. Notably, an application must have exactly one ENTRYdirective,

regardless of the number of source files it contains.

Example: ENTRY Directive in Assembly

AREA myData, DATA, READWRITE ; Define a data section

Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT __main ; Make __main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of a subroutine

... ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a source file

Key Points:

▶ The ENTRY directive indicates where program execution begins.

▶ It ensures there is one clear starting point for the application.

Directive: END

The END directive signals the end of a source file. Every assembly source

file must conclude with this directive to inform the assembler that there

is no more code or data to process.

Example: END Directive in Assembly

AREA myData, DATA, READWRITE ; Define a data section

Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT __main ; Make __main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of a subroutine

... ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of the source file

Key Points:

▶ The END directive indicates the termination of the source file.

▶ Including this directive is mandatory in every assembly program.

Directive: PROC and ENDP

The PROC and ENDP directives mark the start and end of a subroutine (also

called a procedure or function) in an assembly source file. They clearly

delineate the boundaries of a subroutine and enable the assembler to

correctly manage multiple functions within the same file.

Example: PROC and ENDP in Assembly

AREA myData, DATA, READWRITE ; Define a data section

Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT __main ; Make __main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of a subroutine

... ; Assembly program starts here.

ENDP ; Mark the end of the subroutine

END ; Mark the end of the source file

Key Points:

▶ PROC indicates the start of a subroutine.

▶ ENDP indicates the end of that subroutine.

▶ A single source file can contain multiple subroutines, each defined

by its own PROC and ENDP pair.

▶ Important: PROC and ENDP cannot be nested; a function cannot be

defined within another function.

Directive: EXPORT and IMPORT

The EXPORT directive declares a symbol and makes it visible to the linker,

allowing other modules to reference it. Conversely, the IMPORT directive

informs the assembler that a symbol, not defined in the current source

file, is defined externally in another file. The functionality of IMPORT is

similar to the extern keyword in C.

Example: EXPORT and IMPORT in Assembly

AREA myData, DATA, READWRITE ; Define a data section

Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT __main ; Make __main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of a subroutine

... ; Assembly program starts here.

ENDP ; Mark the end of the subroutine

END ; Mark the end of the source file

Key Points:

▶ EXPORT declares a symbol to be accessible by the linker across

multiple source files.

▶ IMPORT is used to reference symbols defined in other assembly files.

▶ The IMPORT directive works similarly to the extern keyword in C.

Directive: Data Allocation

Data allocation directives reserve memory space for constants and vari-

ables in an assembly program. They specify both the type of data and

the size of the memory block to be allocated.

Directives and Their Descriptions:

DCB Define Constant Byte: Reserve 8-bit values.

DCW Define Constant Half-word: Reserve 16-bit values.

DCD Define Constant Word: Reserve 32-bit values.

DCQ Define Constant Quad-word: Reserve 64-bit values.

DCFS Define single-precision floating-point numbers: Reserve 32-

bit values.

DCFD Define double-precision floating-point numbers: Reserve 64-

bit values.

SPACE Defined Zeroed Bytes: Reserve a number of zeroed bytes.

FILL Defined Initialized Bytes: Reserve memory and fill each byte

with a specified value.

Key Points:

▶ Each directive is used to allocate a specific block of memory with a

defined size.

▶ These directives help in organizing data storage in the program by

reserving the exact amount of memory required for each data type.

Directive: Data Allocation – Floating Point

Numbers

Floating point numbers are allocated using directives that reserve space

for numbers in the IEEE 754 format. Two primary formats exist:

▶ Single Precision: Represented as a single long rectangle.

▶ Double Precision: Represented as two long rectangles side by side

(conceptually dividing the 64-bit value into two 32-bit sections).

IEEE 754 Single Precision Format

The single precision format is divided into three fields:

▶ Sign (S): 1 bit

▶ Exponent (E): 8 bits

▶ Mantissa (M): 23 bits (with an implicit leading 1)

S E M

1 bit 8 bits 23 bits

32 bits Single Precision

IEEE 754 Double Precision Format

Double precision numbers are 64 bits in size. One common way to depict

them is as two adjacent 32-bit rectangles, illustrating the higher-order

and lower-order words:

▶ High Order 32 bits: Contains the sign, exponent, and part of the

mantissa.

▶ Low Order 32 bits: Contains the remaining bits of the mantissa.

High Order 32 bits Low Order 32 bits

64 bits Double Precision

Single Precision Examples

Example 1:

Binary Representation:

0 1000 0010 10110. . . 0

Calculation:

Value = (−1)0 × 1.1011 . . . 0 ×
2
(130−127)

= 1.1011 . . .2 × 2
3 ≈ 1101.12

≈ 13.5 (decimal)

Example 2:

Binary Representation:

1 1000 0001 01100. . . 0

Calculation:

Value = (−1)1 × 1.01100 . . . 0 ×
2
(129−127)

= −
(
1.01100 . . .2 × 2

2

)

Supplemental Information

▶ The bias for single precision is 127; hence the actual exponent is

the encoded exponent minus 127.

▶ An implicit leading 1 is assumed in the normalized mantissa.

▶ In Example 1, the exponent field 1000 00102 equals 130 (decimal),

so the multiplier is 2
130−127 = 2

3
.

▶ In Example 2, the exponent field 1000 00012 equals 129 (decimal),

so the multiplier is 2
129−127 = 2

2
, and the sign bit of 1 indicates a

negative value.

Directive: Data Allocation – Floating Point

Numbers (Example 3)

Example 3: Find the IEEE 754 Single Precision Floating Point Repre-

sentation of 3.14

Step 1: Convert to Binary

▶ The integer part 3 converts to 112.

▶ The fractional part 0.14 converts approximately to 0.0010001111010111 . . .2.

▶ Thus, 3.14 ≈ 11.0010001111010111 . . .2.

Step 2: Normalize the Binary Number

▶ Express the binary number in normalized form:

11.0010001111010111 . . .2 = 1.10010001111010111 . . .2 × 2
1

Step 3: Determine the IEEE 754 Fields

▶ Sign (S): 0 (since 3.14 is positive).

▶ Exponent (E): With a bias of 127, the stored exponent is 1+127 = 128.

In binary, 12810 = 100000002.

▶ Mantissa (M): The normalized fraction is 10010001111010111 . . .2.

This is rounded/truncated to 23 bits:

10010001111010111000011 (approximate)

Step 4: Assemble the Final Representation

The final IEEE 754 single precision representation is:

0︸︷︷︸
Sign

10000000︸ ︷︷ ︸
Exponent

10010001111010111000011︸ ︷︷ ︸
Mantissa

This corresponds to the hexadecimal value 0x4048F5C3.

Summary

▶ Sign: 0 (positive).

▶ Exponent: 10000000 (binary for 128, i.e., 1 + 127).

▶ Mantissa: 10010001111010111000011 (23 bits after rounding).

Directive: Data Allocation

The following assembly code example demonstrates various data alloca-

tion directives used to reserve memory space for strings, integers, and

floating-point numbers. Each directive specifies the type and size of data

to be stored.

AREA myData, DATA, READWRITE

hello DCB "Hello World!",0 ; Allocate a null-terminated string

dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255

scores DCD 2,3,8,4 ; Allocate 4 words containing decimal values

miles DCW 100,200,50,0 ; Allocate integers between -32768 and 65535

Pi DCFS 3.14 ; Allocate a single-precision floating-point number

Pi DCFD 3.14 ; Allocate a double-precision floating-point number

p SPACE 255 ; Allocate 255 bytes of zeroed memory space

f FILL 20,0xFF,1 ; Allocate 20 bytes and fill each byte with 0xFF

binary DCB 2_01010101 ; Allocate a byte using a binary value

octal DCB 8_73 ; Allocate a byte using an octal value

char DCB ’A’ ; Allocate a byte initialized to the ASCII value of ’A’

Key Points:

▶ DCB reserves a constant byte (8 bits) and can be used for strings,

small integers, or to specify binary/octal/character values.

▶ DCW reserves a constant half-word (16 bits), suitable for larger integer

values.

▶ DCD reserves a constant word (32 bits), often used for storing decimal

values.

▶ DCFS reserves space for a single-precision floating-point number

(32 bits).

▶ DCFD reserves space for a double-precision floating-point number

(64 bits).

▶ SPACE allocates a block of zeroed bytes.

▶ FILL allocates memory and initializes each byte with a specified

value.

Directive: EQU and RN

TheEQUdirective associates a symbolic name to a numeric constant—much

like the #define in C—allowing you to use meaningful names in your

assembly code instead of hard-coded numbers. In contrast, the RN direc-

tive assigns a symbolic name to a specific register, making the code more

readable and maintainable.

Example Code

; Interrupt Number Definition (IRQn)

BusFault_IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt

SVCall_IRQn EQU -5 ; Cortex-M3 SV Call Interrupt

PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt

SysTick_IRQn EQU -1 ; Cortex-M3 System Tick Interrupt

Dividend RN 6 ; Defines ’Dividend’ as register 6

Divisor RN 5 ; Defines ’Divisor’ as register 5

Notes:

▶ The EQU directive is used to define constant values, which improves

code clarity and maintainability.

▶ The RN directive is used to give a register a symbolic name. (In some

assemblers, this is defined using [EQU/ARM] or .set/GNU syntax.)

Additionally, a FILL directive (e.g., FILL 20, 0xFF, 2) may be used to

initialize blocks of memory with specific patterns. In our context, it can

illustrate how registers or memory segments are preloaded with values

such as 0xFF, 0x00, 0xFF, 0x00, etc.

Summary:

▶ EQU assigns constant numeric values to symbolic names.

▶ RN assigns symbolic names to registers, improving code clarity.

▶ The register file diagram visualizes registers R0–R21, each being 32

bytes in size and potentially used as 16 double precision registers.

Directive: ALIGN

The ALIGN directive forces the location counter (LC) to be adjusted

to a specified alignment boundary. This is crucial for ensuring that

code or data starts at addresses that meet hardware or performance

requirements.

Example: ALIGN in Assembly

AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8 (2^3)

ADD r0, r1, r2 ; Instructions start at a multiple of 8

AREA myData, DATA, ALIGN = 2 ; Data address starts at a multiple of 4 (2^2)

a DCB 0xFF ; The first byte of a 4-byte word

ALIGN 4, 3 ; Align to a boundary of 4 bytes with an offset of 3

b DCB 0x33 ; Set the fourth byte of a 4-byte word

c DCB 0x44 ; Add a byte making the next data misaligned

ALIGN ; Force the next data to be aligned

d DCD 12345 ; Skip three bytes and store the word

Explanation

▶ In the example code section, ALIGN = 3 causes the LC to start at a

multiple of 2
3 = 8. This means that even if the current LC is not a

multiple of 8, it is adjusted upward to the nearest such address.

▶ In the myData section, ALIGN = 2 ensures the data begins at an

address that is a multiple of 2
2 = 4.

▶ The directive ALIGN 4, 3 forces the LC to align to a 4-byte bound-

ary, then adds an offset of 3. For example, if the current LC is

0x08000002, aligning to 4 bytes with an offset of 3 would require

finding the smallest 𝑁 such that:

𝑁(4) + 3 ≥ 0𝑥08000002

and typically, the assembler will adjust LC to the nearest address

that satisfies the alignment constraint (e.g., if aligning to 8 bytes,

LC becomes 0x08000008).

▶ The purpose is to minimize the value of 𝑁 while meeting the

alignment requirement, thereby ensuring data is placed at the

proper memory boundaries.

Summary

The ALIGN directive:

▶ Ensures that code and data are stored at addresses that are multiples

of a given power of two.

▶ Adjusts the location counter (LC) to the nearest required boundary,

optionally with an offset.

▶ Helps to satisfy hardware constraints and improve performance in

memory access.

For instance, if the LC is initially 0x08000002 and an alignment of 2
3 = 8

is required, the assembler will adjust the LC to 0x08000008.

Directive: INCLUDE or GET

The INCLUDE or GET directive is used to incorporate one assembly source

file within another. This is particularly useful for including constant

definitions (via EQU) stored in a separate file.

INCLUDE constants.s ; Load constant definitions

AREA main, CODE, READONLY

EXPORT __main

ENTRY
__main PROC

...

ENDP

END

Data Addressing Modes

Data addressing in assembly can be performed using several modes. The

most common modes include:

▶ Immediate: The data is directly contained within the instruction.

▶ Pre-index: The address is computed by adding an offset to a base

register before accessing memory.

▶ Post-index: The memory is accessed first and then an offset is

added to the base register.

▶ Pre-index with Update: Similar to pre-index addressing, but the

base register is updated with the computed address.

Immediate Addressing

In immediate addressing, the data is embedded in the instruction itself,

making it immediately available when the instruction is decoded.

MOV R0, #100 ; R0 is loaded with the immediate value 100

Register-Indexed Addressing

In register-indexed addressing, a register holds the memory address (i.e.,

it points to data in memory). This mode is useful for accessing elements

in an array or structure.

LDR R0, [R1] ; R0 is loaded with the value pointed to by R1

Pre-index Addressing

Pre-index addressing computes the effective address by adding an

immediate offset to the base register before the memory access.

LDR R1, [R0, #4] ; Compute address: R0 + 4, then load the value into R1

Figure 12.1: Pre-Index with Annotations.

Post-index Addressing

In post-index addressing, the memory access is performed first using the

address in the base register, and then the offset is added to update the

base register.

LDR R1, [R0], #4 ; Load value from address in R0 into R1, then update R0 to R0+4

Figure 12.2: Post-Index with Annota-

tions.

Pre-index with Update Addressing

Pre-index with update addressing is similar to pre-index addressing, but

in this mode, the base register is updated with the computed address

after the offset is added.

LDR R1, [R0, #4]! ; Compute address (R0 + 4), load value into R1, and update R0 to (R0+4)

Figure 12.3: Pre-Index with Updates.

Advanced Operations 13

SIMD: Single Instruction, Multiple Data

Performing addition and subtraction simultaneously is a core advantage

of SIMD (Single Instruction, Multiple Data) processing. This concept is

covered in more depth in EE125 and EE155.

64-bit Subtraction Example

The following assembly example demonstrates a 64-bit subtraction oper-

ation where 𝐶 = 𝐴 − 𝐵.

; 64-bit Subtraction

; C = A - B

; A = 00000002FFFFFFFF

; B = 0000000400000001

; Result stored in r5 (upper) and r4 (lower)

LDR r0, =0xFFFFFFFF ; Load lower part of A

LDR r1, =0x00000002 ; Load upper part of A

LDR r2, =0x00000001 ; Load lower part of B

LDR r3, =0x00000004 ; Load upper part of B

SUBS r4, r0, r2 ; Subtract lower part with carry

SBC r5, r1, r3 ; Subtract upper part with borrow

; Result stored in (r5, r4) as C

Two’s and Sixteen’s Complement

r0 - r2: 0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−0𝑥00000001 (Two’s complement),+0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

Two’s complement inversion results in adding one to the negated value.

Figure 13.1: Program Status Register

Sixteen’s Complement

Sixteen’s complement is derived by subtracting each digit from F until

the last nonzero digit.

Example:

Given: 0𝑥28800000

1. Subtract each digit from F:

𝐹 − 2 = 𝐷, 𝐹 − 8 = 7, 𝐹 − 8 = 7, 𝐹 − 0 = 𝐹

2. The sixteen’s complement of 0𝑥28800000 is:

0𝑥𝐷77𝐹𝐹𝐹𝐹𝐹

8-bit subtraction using a 4-bit adder/subtractor:

8-bit subtraction (normally)

11000111 − 00011000

= 11000111 + (¬00011000 + 1)
= 11000111 + 11101000

= 10101111

𝑁 = 1, 𝑍 = 0, 𝐶 = 1, 𝑉 = 0

Using a 4-bit adder/subtractor:

First 4-bit subtraction (SUBS)

0111 − 1000

= 0111 + (¬1000 + 1)
= 0111 + 1000

= 1111

Second 4-bit subtraction (SBC with borrow)

1100 − 1110

= 1100 + (¬1110 + 1)
= 1100 + 0010

= 1110

Final result: 11101111

The subtraction is split into two 4-bit op-

erations. The first subtraction results in

1111. The second subtraction accounts for

the borrow and produces 1110, combin-

ing to form the full 8-bit result: 11101111.

ARM Arithmetic and Logic

Instructions 14

Key Concepts: ARM Instructions

▶ Instructions often follow a consistent syntax pattern with

optional condition codes and flag updates.

▶ Most arithmetic and logic instructions can update the status

register (PSR) flags (N, Z, C, V) using the ’S’ suffix. The ’S’ suffix is key for conditional exe-

cution and multi-word math.▶ The Program Status Register (PSR) contains crucial flags

like N (Negative), Z (Zero), C (Carry), and V (Overflow)

that reflect the outcome of operations.

▶ Many instructions feature a flexible second operand

(Operand2), which can be an immediate value or a reg-

ister, potentially modified by the barrel shifter. Operand2 flexibility is a hallmark of

ARM, allowing complex operations in

one instruction.

Instruction Overview

The ARM instruction set provides a comprehensive suite of operations

categorized as follows:

▶ Shift Operations: Logic Shift Left (LSL), Logic Shift Right (LSR),

Arithmetic Shift Right (ASR), Rotate Right (ROR), Rotate Right with

Extend (RRX).

▶ Logic Operations: Bitwise AND (AND), OR (ORR), Exclusive OR

(EOR), OR NOT (ORN), Move NOT (MVN).

▶ Bit Manipulation: Bit Field Clear (BFC), Bit Field Insert (BFI), Bit

Clear (BIC), Count Leading Zeroes (CLZ).

▶ Bit/Byte Reordering: Reverse Bit (RBIT), Reverse Byte (REV, REV16,

REVSH). REV instructions are useful for endian-

ness conversions.▶ Addition: Add (ADD), Add with Carry (ADC).

▶ Subtraction: Subtract (SUB), Reverse Subtract (RSB), Subtract with

Carry (SBC).

▶ Multiplication: Multiply (MUL), Multiply-Accumulate (MLA), Multiply-

Subtract (MLS), Signed/Unsigned Multiply Long (SMULL, UMULL),

Signed/Unsigned Multiply-Accumulate Long (SMLAL, UMLAL).

▶ Division: Signed Divide (SDIV), Unsigned Divide (UDIV). Hardware division is available on Cortex-

M3 and later.▶ Saturation: Signed Saturate (SSAT), Unsigned Saturate (USAT).

Saturation prevents wrap-around, com-

mon in DSP.

▶ Sign Extension: Signed Extend Byte/Halfword (SXTB, SXTH), Un-

signed Extend Byte/Halfword (UXTB, UXTH).

▶ Bit Field Extract: Signed/Unsigned Bit Field Extract (SBFX, UBFX).

Common Instruction Pitfalls

▶ Forgetting the ’S’ suffix when flags are needed for condi-

tional execution or multi-word arithmetic.

▶ Incorrectly handling the Carry (C) flag in multi-word addi-

tion (ADC) or subtraction (SBC). The C flag acts as borrow in subtraction.

▶ Choosing the wrong condition codes (<cond>) for condi-

tional branching (e.g., using signed vs. unsigned compar-

isons incorrectly).

▶ Using logical shifts (LSR) instead of arithmetic shifts (ASR)

for signed numbers, or vice-versa. ASR preserves the sign bit.

General Instruction Syntax

Most ARM data processing instructions adhere to a common syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

Where:

▶ <Operation> is the instruction mnemonic (e.g., ADD, SUB, MOV).

▶ {<cond>} is an optional condition code suffix (e.g., EQ, NE, CS) that

allows conditional execution based on PSR flags. E.g., ADDEQ adds only if the Z flag is set.

▶ {S} is an optional suffix that causes the instruction to update the

N, Z, C, and V flags in the APSR.

▶ Rd is the destination register.

▶ Rn is the register holding the first source operand.

▶ Operand2 is the second source operand. This is flexible and can be

an immediate value (a constant prefixed with #), a register (Rm), or a

register value shifted using the barrel shifter (Rm, <shift> #imm).

Program Status Register (PSR)

The PSR holds processor status and control information. It’s a composite

of APSR, IPSR, and EPSR. The Application PSR (APSR) contains the

condition flags updated by instructions with the S suffix:

▶ N (Negative): Set if the result is negative (MSB is 1). MSB: Most Significant Bit.

▶ Z (Zero): Set if the result is zero.

▶ C (Carry): Meaning depends on the operation. For addition, set

if there’s an unsigned overflow. For subtraction, set if no borrow

occurred. Also affected by shifts.

▶ V (Overflow): Set if a signed overflow occurred (result is outside

the representable signed range). Signed overflow is different from un-

signed carry.

Combined PSR (APSR | IPSR | EPSR)

N Z C V

... Other Flags (Q, GE, T, IT, ISR...) ...

APSR Condition Flags shown

UAL vs. Thumb Syntax

Modern ARM assembly uses the Unified Assembler Language (UAL),

which provides a more consistent syntax than the older Thumb syntax. UAL is generally preferred for clarity and

compatibility.

; UAL Syntax (typically 3 operands)

ADD r1, r2, r3 ; r1 = r2 + r3

ADD r1, r2, #4 ; r1 = r2 + 4

; Traditional Thumb Syntax (often 2 operands, dest=src1)

ADD r1, r3 ; r1 = r1 + r3

ADD r1, #15 ; r1 = r1 + 15

Arithmetic Instructions

Addition (ADD, ADC)

Understanding Multi-Word Arithmetic

Operations on data larger than the native register size (e.g., 64-bit

math on a 32-bit CPU) require breaking the operation into stages.

▶ Split the operation into 32-bit chunks (e.g., lower and upper

halves).

▶ Process the least significant chunk first using an instruction

that sets the Carry flag (ADDS, SUBS). The ’S’ is vital here!

▶ Process subsequent chunks using instructions that incorpo-

rate the Carry flag (ADC, SBC). ADC adds the carry, SBC subtracts the bor-

row.▶ Requires careful management of register pairs to hold the

multi-word values.

Example: 64-bit addition uses ADDS for the lower 32 bits and ADC

for the upper 32 bits.

The ADD instruction performs addition. ADC adds the operands plus the

value of the Carry flag.

; Basic addition examples

ADD r1, r2, r3 ; r1 = r2 + r3

ADD r1, r2, #4 ; r1 = r2 + 4

; Example: Update flags (Z=1, C=1)

LDR r0, =0xFFFFFFFF ; r0 = -1

LDR r1, =0x00000001 ; r1 = 1

ADDS r3, r0, r1 ; r3 = r0+r1 = 0. Sets Z=1, C=1

; 64-bit addition: C = A + B

; A in r1:r0, B in r3:r2, Result C in r5:r4

LDR r0, =0xFFFFFFFF ; Lower 32 bits of A

LDR r1, =0x00000002 ; Upper 32 bits of A

LDR r2, =0x00000001 ; Lower 32 bits of B

LDR r3, =0x00000004 ; Upper 32 bits of B

ADDS r4, r0, r2 ; r4 = A[31:0]+B[31:0]. Updates Carry

ADC r5, r1, r3 ; r5 = A[63:32]+B[63:32]+Carry

A [31:0] (r0) B [31:0] (r2)

+

Result [31:0] (r4)

Carry Out (C flag)

A [63:32] (r1)B [63:32] (r3)

+

Result [63:32] (r5)

Figure 14.1: Conceptual Flow of 64-bit

Addition using ADDS and ADC.

Subtraction (SUB, SBC, RSB)

SUB performs subtraction. SBC subtracts the operands *and* subtracts the

borrow indicated by the Carry flag (calculates Rd = Rn - Op2 - (1-C)). C=1 means *no* borrow, C=0 means bor-

row occurred.RSB (Reverse Subtract) calculates Rd = Op2 - Rn.

RSB is useful for negating numbers: RSB

r0, r0, #0.

; Basic subtraction

SUB r1, r2, r3 ; r1 = r2 - r3

SUB r1, r2, #4 ; r1 = r2 - 4

RSB r1, r2, #0 ; r1 = 0 - r2 (negation)

; 64-bit subtraction: C = A - B

; A in r1:r0, B in r3:r2, Result C in r5:r4

LDR r0, =0xFFFFFFFF ; Lower 32 bits of A

LDR r1, =0x00000002 ; Upper 32 bits of A

LDR r2, =0x00000001 ; Lower 32 bits of B

LDR r3, =0x00000004 ; Upper 32 bits of B

SUBS r4, r0, r2 ; r4 = A[31:0]-B[31:0]. Updates Carry (Borrow)

SBC r5, r1, r3 ; r5 = A[63:32]-B[63:32]-Borrow (1-C)

Multiplication (MUL, MLA, MLS, UMULL, SMULL,

UMLAL, SMLAL)

Multiplication Optimization Tips

▶ Use shifts (LSL) for multiplication by powers of 2 (e.g., x

LSL # 3 is x * 8).

▶ Combine shifts and adds/subs for small constants (e.g., ADD

r1, r0, r0, LSL # 3 calculates r1 = r0 * 9). Replaces a slower MUL instruction.

▶ Use MLA for fused multiply-add operations (a*b + c) com-

mon in loops and filters. Often single-cycle.

▶ Use long multiplication (UMULL, SMULL) only when the full

64-bit result is necessary.

Example: x * 10 can be calculated as ‘(x « 3) + (x « 1)‘.

ARM provides instructions for both 32-bit and 64-bit results.

▶ MUL: 32x32 -> lower 32 bits. MUL r6, r4, r2 ; r6 = (r4 * r2)[31:0]. Result is the same for signed/unsigned

if only lower 32 bits needed.▶ MLA: Multiply and Accumulate. MLA r6, r4, r1, r0 ; r6 = r0 +

(r4 * r1)[31:0]. Computes Ra + (Rn * Rm).

▶ MLS: Multiply and Subtract. MLS r6, r4, r1, r0 ; r6 = r0 - (r4 *

r1)[31:0]. Computes Ra - (Rn * Rm).

▶ UMULL: Unsigned Multiply Long (32x32 -> 64). UMULL RdLo,

RdHi, Rn, Rm. Result in two registers: RdHi:RdLo.

▶ SMULL: Signed Multiply Long (32x32 -> 64). SMULL RdLo, RdHi,

Rn, Rm. Handles signed operands correctly for

64-bit result.▶ UMLAL: Unsigned Multiply Accumulate Long.UMLAL RdLo, RdHi,

Rn, Rm adds the 64-bit product to the existing 64-bit value in

RdHi:RdLo.

▶ SMLAL: Signed Multiply Accumulate Long. SMLAL RdLo, RdHi,

Rn, Rm.

; Long multiplication example (Unsigned)

UMULL r3, r4, r0, r1 ; r4:r3 = r0 * r1 (r4=MSB, r3=LSB)

; Signed Multiply Accumulate Long example

SMLAL r3, r4, r0, r1 ; r4:r3 = r4:r3 + (signed)(r0 * r1)

Division (SDIV, UDIV)

Cortex-M processors (like M3/M4/M7) include hardware division in-

structions.

▶ SDIV: Signed Division. SDIV Rd, Rn, Rm ; Rd = Rn / Rm.

▶ UDIV: Unsigned Division. UDIV Rd, Rn, Rm ; Rd = Rn / Rm.
Division often takes more cycles than

multiplication.

Other Arithmetic (Saturation, Sign Extension)

▶ Saturation (SSAT, USAT): Clamp the result of an operation (often

involving shifts) to a specified signed or unsigned range. Useful in

DSP to prevent unexpected wrap-around on overflow.

▶ Sign/Zero Extension (SXTB, SXTH, UXTB, UXTH): Extend a

byte or halfword value in a register to a full 32-bit word, either

preserving the sign (SX) or padding with zeros (UX). Essential when loading smaller types

into 32-bit registers for arithmetic.

Bitwise Logic Instructions

These instructions operate on individual bits of the operands.

▶ AND: Bitwise AND. AND Rd, Rn, Op2 ; Rd = Rn & Op2. Result

bit is 1 only if both input bits are 1.

▶ ORR: Bitwise OR (Inclusive OR). ORR Rd, Rn, Op2 ; Rd = Rn |

Op2. Result bit is 1 if either input bit is 1.

▶ EOR: Bitwise Exclusive OR (XOR). EOR Rd, Rn, Op2 ; Rd = Rn

Ôp2. Result bit is 1 if input bits are different. Often used for toggling bits.

▶ ORN: Bitwise OR NOT. ORN Rd, Rn, Op2 ; Rd = Rn | (Op2).

▶ BIC: Bit Clear. BIC Rd, Rn, Op2 ; Rd = Rn & (Op2). Clears bits in

Rn where Op2 has a 1. Very useful for clearing status flags or

masking.▶ MVN: Move NOT (Bitwise Negation). MVN Rd, Op2 ; Rd = Op2.

; Logic Examples

AND r2, r0, r1 ; r2 = r0 & r1

ORR r2, r0, r1 ; r2 = r0 | r1

EOR r2, r0, r0 ; r2 = r0 ^ r0 = 0 (clear register)

MVN r1, r0 ; r1 = ~r0 (bitwise not)

BIC r0, r0, #0x0F ; Clear the lower 4 bits of r0

Bit Field Instructions (BFC, BFI, SBFX, UBFX)

These instructions manipulate contiguous sequences of bits (bit fields). Useful for packed data or register manip-

ulation.

▶ BFC: Bit Field Clear. BFC Rd, #lsb, #width ; Clears ‘width‘ bits

in Rd starting at ‘lsb‘. lsb: least significant bit position of the

field.▶ BFI: Bit Field Insert. BFI Rd, Rn, #lsb, #width ; Inserts the bot-

tom ‘width‘ bits of Rn into Rd starting at ‘lsb‘. width: number of bits in the field.

▶ SBFX/UBFX: Signed/Unsigned Bit Field Extract. SBFX Rd, Rn,

#lsb, #width ; Extracts ‘width‘ bits starting at ‘lsb‘ from Rn into

the LSBs of Rd, sign-extending (SBFX) or zero-extending (UBFX).

; Bit Field Examples

BFC R4, #8, #12 ; Clear bits 19:8 of R4

BFI R9, R2, #8, #12 ; Copy bits 11:0 of R2 into bits 19:8 of R9

UBFX R0, R1, #4, #8 ; Extract bits 11:4 of R1 into R0 (zero-padded)

Bitwise vs. Boolean Operators (in C)

It’s crucial to distinguish C’s bitwise operators from its logical Boolean

operators. Using the wrong operator is a common

C bug!

▶ Bitwise: & (AND), | (OR), ˆ (XOR), ˜ (NOT). Operate independently

on each bit across the integer’s width.

▶ Boolean: && (Logical AND), || (Logical OR), ! (Logical NOT). Treat

non-zero values as true, zero as false, and perform short-circuit

evaluation.

// Examples in C

int a = 0x10; // Binary 0001 0000

int b = 0x01; // Binary 0000 0001

int bitwise_and = a & b; // Result: 0x00 (0)

int logical_and = a && b; // Result: 1 (true, because both a and b are non-zero)

int bitwise_not_b = ~b; // Result: 0xFFFFFFFE (assuming 32-bit int)

int logical_not_b = !b; // Result: 0 (false, because b is non-zero/true)

Common C Bit Manipulation Idioms

Let a be a variable and k be the bit position (0-indexed).

▶ Check bit k: if (a & (1 « k)) ... (1 « k) creates a mask with only bit k

set.▶ Set bit k: a |= (1 « k);
Forces bit k to 1.▶ Clear bit k: a &= (1 « k);
(1 « k) creates a mask with only bit k

clear.
▶ Toggle bit k: a =̂ (1 « k);

Flips the value of bit k.

Memory Access

Memory Access Best Practices

▶ Respect data alignment: Accessing words (LDR/STR) on

word boundaries (address divisible by 4) and halfwords

(LDRH/STRH) on halfword boundaries (address divisible by

2) is crucial for performance and sometimes correctness on

ARM. Unaligned access might cause faults or be significantly

slower (emulated in software). Bytes (LDRB/STRB) can be accessed at any

address.▶ Use Load/Store Multiple (LDM/STM) instructions for trans-

ferring several registers efficiently, especially for stack oper-

ations or block copies.

▶ Choose appropriate addressing modes (offset, pre-indexed,

post-indexed) to match the access pattern (e.g., array access,

stack push/pop).

▶ Be mindful of memory barriers (DMB, DSB, ISB) when dealing

with memory shared between different execution units (e.g.,

CPU and DMA) or requiring strict ordering for peripherals.

Ensures memory operations complete in

the expected order.

Addressing Modes

LDR and STR support several ways to calculate the memory address:

▶ Offset Addressing: [Rn, #offset] or [Rn, Rm]. The address is

base register (Rn) + offset. The base register Rn is not changed. Simple access relative to a base pointer.

▶ Pre-indexed Addressing: [Rn, #offset]! or [Rn, Rm]!. The ad-

dress is calculated as base + offset, the transfer occurs, and then

the base register Rn is updated with the calculated address. Update pointer *before* access. Useful

for sequential access.▶ Post-indexed Addressing: [Rn], #offset or [Rn], Rm. The trans-

fer occurs using the address currently in the base register Rn. Then,

the base register Rn is updated by adding the offset. Update pointer *after* access. Also good

for sequential access.

; Examples: Assume r1 = 0x1000 initially

LDR r0, [r1, #4] ; Offset: r0=Mem[0x1004]. r1 still 0x1000

LDR r0, [r1, #4]! ; Pre-index: r0=Mem[0x1004]. r1 becomes 0x1004

LDR r0, [r1], #4 ; Post-index: r0=Mem[0x1000]. r1 becomes 0x1004

STRB r0, [r1] ; Store lower byte of r0 to Mem[0x1000]

LDRSH r2, [r1] ; Load signed halfword from Mem[0x1000] into r2

Load/Store Multiple Registers (LDM, STM)

These instructions allow transferring multiple registers between the core

and memory in a single instruction, significantly improving efficiency for

tasks like context switching, function prologues/epilogues, and block

memory copies. Much faster than repeated LDR/STR for

>2 registers.

Syntax and Addressing Modes

The general syntax is LDM<mode> Rn!, reglist and STM<mode> Rn!,

reglist.

▶ Rn is the base register containing the starting memory address

(often the stack pointer, SP).

▶ {!} is optional writeback. If present, the base register Rn is updated

after the *entire* transfer.

▶ {reglist} is a list of registers enclosed in braces, e.g., {r0-r3, r5,

lr}.

▶ <mode> specifies how the address changes during the transfer,

combined with whether the pointer updates before/after each

individual register transfer:

• IA (Increment After): Address increases after each transfer.

Base addr -> Base addr + 4*N.

• IB (Increment Before): Address increases before each transfer.

Base addr + 4 -> Base addr + 4*N.

• DA (Decrement After): Address decreases after each transfer.

Base addr -> Base addr - 4*N.

• DB (Decrement Before): Address decreases before each trans-

fer. Base addr - 4 -> Base addr - 4*N.

N = number of registers in list.

Memory Operation Optimization

Performance Tips:

▶ Use LDM/STM for transferring 3 or more registers; it’s

usually faster than multiple LDR/STRs.

▶ Ensure data structures accessed frequently are aligned

appropriately (e.g., 4-byte alignment for words) to avoid

performance penalties or faults. Cache line alignment (if

applicable) can further improve performance for larger

structures.

▶ Minimize unnecessary memory accesses; keep frequently

used values in registers.

▶ Use appropriate addressing modes (pre/post-indexed) for

efficient pointer updates in loops (e.g., array processing).

Data Manipulation and Memory

Access 15

Barrel Shifter

The barrel shifter is a hardware component that allows efficient bitwise

shifting and rotation of values within registers. It is commonly used in

arithmetic operations, data alignment, and fast multiplication.

Figure 15.1: Barrel Shifter: Logical and

RRX Shifts.

Figure 15.2: Barrel Shifter: Arithmetic

and ROR Rotations.

Shift and Rotate Operations

▶ Logical Shift Left (LSL) – Moves all bits left by a specified number

of places, inserting zeros on the right. Used for fast multiplication

by powers of two.

▶ Logical Shift Right (LSR) – Moves all bits right by a specified

number of places, inserting zeros on the left. Often used for division

by powers of two.

▶ Arithmetic Shift Right (ASR) – Similar to LSR but preserves the

sign bit (MSB) when shifting right, useful for signed division.

▶ Rotate Right (ROR) – Moves all bits right in a circular fashion,

with bits wrapping around from the right end to the left.

▶ Rotate Right Extended (RRX) – Similar to ROR, but also includes

the carry flag as an additional bit in the rotation.

Why No Rotate Left?

There is no explicit rotate left instruction because it can be achieved using

ROR with a different offset. Specifically, rotating left by 𝑛 bits is equivalent

to rotating right by (32 − 𝑛) bits in a 32-bit register.

Implementation of Barrel Shifter

Figure 15.3: Cascade of 2-to-1 Multiplex-

ers.

A barrel shifter is typically implemented using a cascade of parallel

2-to-1 multiplexers, allowing efficient bitwise shifts and rotations. The

following example illustrates a four-bit barrel shifter performing a rotate

right operation.

Figure 15.4: Four-bit Barrel Shifter Struc-

ture.

Example: Four-bit Barrel Shifter (Rotate Right)

The table to the right shows how the barrel shifter rotates a four-bit value

based on control signals 𝑆1 and 𝑆0:

Each bit is shifted in parallel, wrapping around cyclically to implement

the rotate right operation.

Barrel Shifter Examples

The barrel shifter is commonly used in ARM assembly instructions

to perform efficient arithmetic and logical operations. Below are some

examples demonstrating its usage:

; Example 1: Left Shift (Multiply by 8)

ADD r1, r0, r0, LSL #3

; r1 = r0 + (r0 << 3) = r0 + 8 * r0

; Example 2: Logical Right Shift (Unsigned Division by 8)

ADD r1, r0, r0, LSR #3

; r1 = r0 + (r0 >> 3) = r0 + (r0 / 8) (unsigned)

; Example 3: Arithmetic Right Shift (Signed Division by 8)

ADD r1, r0, r0, ASR #3

; r1 = r0 + (r0 >> 3) = r0 + (r0 / 8) (signed)

Using Barrel Shifter for Optimization

The barrel shifter can be used to optimize multiplication operations,

reducing instruction count and improving execution speed. The following

example shows how a multiplication by 9 can be rewritten using the

barrel shifter:

; Optimized multiplication using Barrel Shifter

ADD r1, r0, r0, LSL #3

; Equivalent to r1 = r0 * 9

; Equivalent multiplication using a separate register

MOV r2, #9 ; Load constant 9 into r2

MUL r1, r0, r2 ; Multiply r0 by 9

Endianness

Endianness refers to the byte order used when storing multi-byte values

in memory. It determines how the least significant and most significant

bytes are arranged.

Figure 15.5: Little vs. Big Endian Repre-

sentation.

Little Endian

▶ The least significant byte (LSB) is stored at the lowest memory

address.

▶ Used by ARM (default), x86, and most modern processors.

Big Endian

▶ The most significant byte (MSB) is stored at the lowest memory

address.

▶ Used by some legacy architectures (e.g., Motorola 68k, PowerPC in

certain configurations).

Addressing Convention

Regardless of the endianness, the memory address of a word is defined

as the lowest address of all the bytes it occupies.

Endianness in ARM

▶ ARM is Little Endian by default.

▶ It can be configured to operate in Big Endian mode if required.

Load-Modify-Store

𝑥 = 𝑥 + 1;

The Load-Modify-Store sequence is a common approach used in assembly

programming to read a value from memory, modify it, and store it back.

This operation is essential for updating variables in memory.

; Assume the memory address of x is stored in r1

LDR r0, [r1] ; Load value of x from memory

ADD r0, r0, #1 ; x = x + 1

STR r0, [r1] ; Store updated x back into memory

Single Register Data Transfer

The following table summarizes the different load and store instructions

for word, byte, and halfword transfers in ARM assembly:

Instruction Description

LDR Load Word

LDRB Load Byte

LDRH Load Halfword

LDRSB Load Signed Byte

LDRSH Load Signed Halfword

STR Store Word

STRB Store Lower Byte

STRH Store Lower Halfword

Load/Store Multiple Registers

The ARM architecture allows transferring multiple registers in a single

instruction using the STM (Store Multiple) and LDM (Load Multiple)

instructions. These are useful for saving and restoring register states

efficiently, such as during function calls or context switching.

Synonyms for STM and LDM

The following instructions are functionally equivalent:

▶ STM (Store Multiple) = STMIA (Increment After) = STMEA

(Empty Ascending)

▶ LDM (Load Multiple) = LDMIA (Increment After) = LDMFD (Full

Descending)

Register Order and Memory Addressing

For STM/LDM operations: - The order in which registers are listed in the

instruction does not affect execution. - The lowest-numbered register is

stored/loaded at the lowest memory address.

Example: Stack Growth and Memory Addressing

Consider a memory size of 64 KB, starting at address 0x20080000. De-

pending on the stack configuration, the Stack Pointer (SP) determines

whether the stack grows upwards (ascending) or downwards (descend-

ing):

- SP1 = 0x20080000, Stack Grows Upwards (Ascending) → Full Stack -

SP2 = 0x20080004, Stack Grows Downwards (Descending) → Empty

Stack

A full descending stack (FD) stores data before decrementing the stack

pointer, while an empty ascending stack (EA) stores data after increment-

ing it.

Stack Pointer Values for Different Stack Types

The stack pointer (SP) values for different stack configurations:

▶ Full Ascending (FA): SP = 0x2007FFFC

▶ Empty Ascending (EA): SP = 0x20080000

▶ Full Descending (FD): SP = 0x20090000

▶ Empty Descending (ED): SP = 0x2008FFFC

Understanding Stack Behavior

- A full stack means the stack pointer references the last used address. - An

empty stack means the stack pointer references the next available address.

- The stack grows either ascending (higher addresses) or descending

(lower addresses). - ARM defaults to a full descending stack (FD), but it

can be configured differently.

This section provides a conceptual understanding of stack behavior

in ARM, crucial for efficient memory management and function call

handling.

Store Multiple Registers

The STM (Store Multiple) instruction allows saving multiple registers to

memory in a single operation, which is useful for preserving context

during function calls or interrupt handling.

Assembly Control Flow: Loops

and Conditionals 16

This chapter provides a detailed examination of control flow mechanisms

in ARM assembly, specifically focusing on the implementation of C-style

for loops, conditional execution based on processor flags, specialized

branching instructions, and the IT (If-Then) instruction block.

For Loop Implementations

Translating C loops to assembly.

The standard C for loop, used for iteration, can be translated into assem-

bly in multiple ways. We consider the example: int sum=0; for(i=0;

i<10; i++) sum += i; .

Implementation 1: Check at Bottom

This approach executes the loop body at least once (if the initial condition

allows entry via the first branch) and checks the condition at the end.

; C Code: for(i=0; i<10; i++) { sum += i; }

; r0 = i, r1 = sum

MOV r0, #0 ; i = 0

MOV r1, #0 ; sum = 0

B check ; Branch to initial condition check

loop: ; Start of loop body

ADD r1, r1, r0 ; sum += i

ADD r0, r0, #1 ; i++

check: ; Condition check point

CMP r0, #10 ; Compare i with 10

BLT loop ; Branch to loop if i < 10 (Signed Less Than)

endloop: ; Loop exit

; Final sum is in r1

The flowchart shows initialization, an immediate jump to the check, and

then looping between the body and the check until i < 10 is false.

Implementation 2: Check at Top

More common ’for’ loop translation.

This implementation checks the condition at the beginning of each

iteration. This is often considered a more standard translation of a C for

loop.

; C Code: for(i=0; i<10; i++) { sum += i; }

; r0 = i, r1 = sum

MOV r0, #0 ; i = 0

MOV r1, #0 ; sum = 0

loop: ; Start of loop iteration (includes check)

CMP r0, #10 ; Compare i with 10

BGE endloop ; Branch if i >= 10 (Signed Greater or Equal)

; Loop body

ADD r1, r1, r0 ; sum += i

ADD r0, r0, #1 ; i++

B loop ; Branch back to loop check

endloop: ; Loop exit

; Final sum is in r1

The flowchart shows initialization followed by the loop block which starts

with the condition check (i<10). If true, the body executes, and it loops

back; if false, it exits.

Conditional Execution

Using processor flags (N,Z,C,V).

ARM instructions can be executed conditionally based on the Application

Program Status Register (APSR) flags (N, Z, C, V), typically set by a

preceding CMP or data processing instruction with the ’S’ suffix.

Condition Codes and Flags Tested

A condition suffix can be added to many instructions. The following table

details these conditions:

Instruction Suffix Condition Description Flags Tested

EQ Equal Z = 1

NE Not Equal Z = 0

HS / CS Unsigned Higher or Same / Carry Set C = 1

LO / CC Unsigned Lower / Carry Clear C = 0

MI Minus / Negative N = 1

PL Plus / Positive or Zero N = 0

VS Overflow Set V = 1

VC Overflow Clear V = 0

HI Unsigned Higher C = 1 and Z = 0

LS Unsigned Lower or Same C = 0 or Z = 1

GE Signed Greater Than or Equal N == V

LT Signed Less Than N != V

GT Signed Greater Than Z = 0 and N == V

LE Signed Less Than or Equal Z = 1 or N != V

Conditional Execution Examples

Simple If-Else Statement

Implementing if (a <= 0) y = -1; else y = 1; where a is in r0 and

y is in r1:

CMP r0, #0 ; Compare a with 0, setting flags

MOVLE r1, #-1 ; If Less than or Equal (Z=1 or N!=V), r1 = -1

MOVGT r1, #1 ; If Greater Than (Z=0 and N==V), r1 = 1

This uses the LE and GT conditions to execute one of the two MOV instruc-

tions based on the result of the CMP.

If-Else with Multiple OR Conditions

Implementingif (a == 1 || a == 7 || a == 11) y = 1; else y =

-1; where a is in r0 and y is in r1:

CMP r0, #1 ; Compare a with 1

CMPNE r0, #7 ; If Not Equal, compare a with 7

CMPNE r0, #11 ; If Still Not Equal, compare a with 11

; At this point, Z=1 if any of the comparisons resulted in Equal

MOVEQ r1, #1 ; If Equal (Z=1), set y = 1

MOVNE r1, #-1 ; If Not Equal (Z=0 after last CMP), set y = -1

This relies on the fact that CMPNE does not set the Z flag if its condition

(NE) is met, only clearing it if the comparison finds equality. Therefore,

the Z flag remains set from a previous CMP if an equality was found. Relies on flags not being set by interme-

diate CMPNE if condition met.

Compound Boolean Expression

Implementing if(x <= 20 || x >= 25) a = 1; where x is signed

in r0, a in r1:

; r0 = x, r1 = a

CMP r0, #20 ; Compare x and 20

MOVLE r1, #1 ; a = 1 if Less or Equal (x <= 20)

; Need to ensure ’a’ isn’t reset if the first condition was true

; but the second isn’t. The provided example uses:

CMP r0, #25 ; Compare x and 25

MOVGE r1, #1 ; a = 1 if Greater or Equal (x >= 25)

Note: As mentioned before, this specific sequence might overwrite r1 incorrectly
depending on the value of x. A conditional branch approach might be safer for
strict C equivalence.. Sequential MOVs might have side effects.

Compare and Branch Instructions

Optimized compare-with-zero and

branch.

These instructions provide a compact way to compare a register with

zero and branch conditionally, without altering the condition flags.

▶ CBZ Rn, label: Compare and Branch if Zero. Branches if Rn is 0.

Equivalent to: CMP Rn, #0; BEQ label (but flags are unaffected).

▶ CBNZ Rn, label: Compare and Branch if Non Zero. Branches if

Rn is not 0. Equivalent to: CMP Rn, #0; BNE label (but flags are

unaffected).

Loop Control: Break and Continue

Illustrative C code shows the behavior of break and continue.

▶ Break Example:for(int i=0; i<5; i++) if (i==2) break; printf("%d,

", i); -> Output: 0, 1, . Exits loop early.

▶ Continue Example:for(int i=0; i<5; i++) if (i==2) continue;

printf("%d, ", i); -> Output: 0, 1, 3, 4, . Skips current iteration.

Assembly Example: String Length using Break Logic

Finding the length of a null-terminated string demonstrates using CBNZ

to exit a loop (similar to break) when a null character is found.

; Input: r0 = string memory address

; Output: r1 = string length

MOV r1, #0 ; len = 0

loop:

LDRB r2, [r0] ; Load byte (*str) into r2

; Check if the byte is the null terminator (’\0’)

CBNZ r2, notZero ; If r2 is Not Zero, branch to notZero

; If r2 is Zero (null terminator found), fall through

B endloop ; Branch to endloop (acts like break)

notZero:

ADD r0, r0, #1 ; Increment string pointer (str++)

ADD r1, r1, #1 ; Increment length counter (len++)

B loop ; Go back to the start of the loop

endloop:

; String length result is in r1

This code iterates, loading each character. CBNZ checks if it’s non-zero. If

it’s zero, the loop terminates via B endloop. Uses CBNZ for null check.

IT (If-Then) Instruction Block

Thumb-2 conditional execution block.

The IT instruction allows for conditional execution of one to four sub-

sequent instructions based on a specified condition. This is particularly

relevant in Thumb-2 instruction set architecture.

Syntax and Semantics

The syntax is IT{x{y{z}}} {cond}.

▶ {cond}: The condition applied to the first instruction following IT.

▶ x, y, z: Optional specifiers for the 2nd, 3rd, and 4th instructions.

Each can be:

• T (Then): The instruction executes if {cond} is true.

• E (Else): The instruction executes if {cond} is false.

The IT instruction itself encodes the conditions for the following instruc-

tions.

Examples

ITTE Example

ITTE NE specifies an If-Then-Then-Else block based on the Not Equal

condition.

ITTE NE ; If NE, T, T, E. (Assembler might generate this)

ANDNE r0,r0,r1 ; Executes if NE (First T) - 16-bit AND

ADDNE r2,r2,#1 ; Executes if NE (Second T) - 32-bit ADD(S)

MOVEQ r2,r3 ; Executes if EQ (E - Else condition) - 16-bit MOV

ITT Example

ITT EQ specifies an If-Then-Then block for the Equal condition.

ITT EQ

MOVEQ r0,r1 ; Executes if EQ (First T)

ADDEQ r0,r0,#1 ; Executes if EQ (Second T)

A branch (BEQ dloop) is permitted at the end of an IT block.

ITT AL Example (Implicit)

The AL (Always) condition can sometimes be used. An example shows 16-

bit non-flag-setting instructions within the implied block (ADDAL, SUBAL),

followed by a 32-bit instruction (ADD) outside the block.

Assembler Generation

Programmers typically do not need to write IT instructions manually.

The assembler automatically generates the necessary IT instruction(s)

when it encounters conditional instructions that require them. Assembler handles IT generation.

Translation Example

A sequence of instructions intended to be conditional:

; Intended logic: if EQ T, T, E, T

ADD r0, r0, r0 ; Inst 1 (Condition: EQ, Pattern: T)

ADD r1, r0, r0 ; Inst 2 (Condition: EQ, Pattern: T)

ADD r2, r0, r0 ; Inst 3 (Condition: NE, Pattern: E)

ADD r3, r0, r0 ; Inst 4 (Condition: EQ, Pattern: T)

This sequence, if intended for an IT block, would require an ITTET EQ

instruction and would translate by the assembler to:

ITTET EQ ; Assembler generates this

ADDEQ r0, r0, r0

ADDEQ r1, r0, r0

ADDNE r2, r0, r0

ADDEQ r3, r0, r0

Subroutines, Stacks, and Calling

Conventions 17

This chapter introduces subroutines (functions/procedures) in the con-

text of ARM Cortex-M microcontrollers, covering their basic operation,

the critical role of the stack, and the standard conventions for passing

parameters and managing registers.

Subroutine Fundamentals

▶ Definition: A reusable block of code with a single entry point and

a single exit point, designed to perform a specific task and return

control to the caller. Also known as functions or procedures. Single entry/exit block.

▶ Calling Mechanism (RISC - ARM):

• Call: The BL <subroutine_label> (Branch with Link) in-

struction is used. It performs two actions:

1. Saves the return address (the address of the instruction

immediately following the BL) into the Link Register (LR,

which is R14). LR holds return address.

2. Sets the Program Counter (PC, R15) to the address of the

<subroutine_label>.

• Return: The BX LR (Branch and Exchange) instruction is typ-

ically used. It loads the value of LR into the PC, causing

execution to resume at the instruction after the original BL

call. The ’Exchange’ part relates to switching instruction sets

(ARM/Thumb), but Cortex-M only uses Thumb. BX LR to return.

▶ Environment Preservation: Calls must manage parameters and

preserve the caller’s environment (registers the caller expects to

remain unchanged).

Stack Implementation in Cortex-M

Memory for temporary storage.

The stack is a region of memory used for temporary storage, crucial for

subroutine calls, interrupt handling, and local variable allocation.

Stack Model: Full Descending (FD)

Cortex-M typically uses a Full Descending stack. Default: SP points to last item, grows

down.

▶ Full: The Stack Pointer (SP, R13) points to the last valid data item

pushed onto the stack (Top of Stack).

▶ Descending: The stack grows towards lower memory addresses.

Pushing data causes SP to decrease.

▶ Initialization: The SP must be initialized to the end (highest address,

the "stack base") of the allocated stack memory region before use.

This is typically handled by startup code (startup.s). For the

STM32-Discovery board mentioned, SP might start at 0x20000200.

Stack Operations and Instructions

PUSH

▶ Action: Stores one or more registers onto the stack.

▶ SP Behavior: SP is decremented before each register is stored (SP =

SP - 4), fitting the "descending" model. For multiple registers, SP

is adjusted by 4 times the number of registers. The store happens

at the new SP address, fitting the "full" model.

▶ Instruction: PUSH {reglist}.

▶ Equivalence: Functionally equivalent to STMDB SP!, {reglist}

(Store Multiple Decrement Before, with writeback ‘¡). PUSH STMDB SP!, ...

▶ Register Order: The order of registers in {reglist} does not matter.

The hardware always stores the registers based on their number,

with the lowest-numbered register stored at the lowest memory

address (i.e., pushed last onto a descending stack). Lowest reg no. at lowest address.

POP

▶ Action: Loads one or more registers from the stack.

▶ SP Behavior: Data is loaded from the address pointed to by SP

(𝑅𝑑 = (∗𝑆𝑃), fitting the "full" model). Then SP is incremented after
each register is loaded (SP = SP + 4, fitting the "descending" stack

shrinking). For multiple registers, SP is adjusted by 4 times the

number of registers.

▶ Instruction: POP {reglist}.

▶ Equivalence: Functionally equivalent to LDMIA SP!, {reglist}

(Load Multiple Increment After, with writeback ‘¡). POP LDMIA SP!, ...

▶ Register Order: The order of registers in {reglist} does not matter.

The hardware always loads the registers based on their number,

with the lowest-numbered register loaded from the lowest mem-

ory address (i.e., popped first from a descending stack). Lowest reg no. from lowest address.

FD Stack Example Trace

Consider PUSH {r3, r1, r7, r2} assuming initial SP = 16, r1=0, r2=4,

r3=8, r7=12.

1. SP becomes 16 - (4*4) = 0.

2. Memory writes (lowest address first, pushed last): r1 at address 0

(New SP), r2 at address 4, r3 at address 8, r7 at address 12. Final SP

points to r1 at address 0.

Now, POP {r3, r1, r7, r2}.

1. Load r1 from address 0 (SP). SP becomes 4.

2. Load r2 from address 4 (SP). SP becomes 8.

3. Load r3 from address 8 (SP). SP becomes 12.

4. Load r7 from address 12 (SP). SP becomes 16.

The original values are restored to the registers, and SP returns to its

initial value.

Alternative Stack Models

While FD is common for Cortex-M, ARM supports other models (ED, FA,

EA) with different combinations of SP pointing to full/empty slots and

growth direction (Ascending/Descending), along with corresponding

LDM/STM addressing modes (IA, IB, DA, DB). The table shows the

equivalent LDM/STM instructions for each stack type, such as STMDB for

FD push and LDMIA for FD pop. ARM supports 4 stack models.

ARM Procedure Call Standard (AAPCS)

Rules for function calls.

The AAPCS provides a standardized convention for subroutine calls,

ensuring interoperability between code possibly generated by different

compilers or written by different programmers.

Register Roles

The AAPCS defines specific roles for registers r0-r15:

▶ r0-r3: Argument and Result Registers

• Pass first four 32-bit arguments (r0=Arg1, r1=Arg2, r2=Arg3,

r3=Arg4).

• Return results (up to 128 bits using r0-r3). r0 holds the primary

(or sole) 32-bit return value. 64-bit results use r1:r0.

• Caller-Saved (Scratch Registers / Not Preserved): The sub-

routine (callee) can modify these registers without restriction.

If the caller needs the values in r0-r3 after the call, the caller

must save them before the BL instruction. R0-R3: Args/Return, Caller Saves.

▶ r4-r11: Callee-Saved Variable Registers

• Used to hold local variables within a subroutine.

• Callee-Saved (Must be Preserved): The subroutine must pre-

serve the original values of these registers if it modifies them.

This is typically done by pushing them onto the stack upon

entry and popping them off before returning. The caller can as-

sume these registers retain their values across the subroutine

call. (r9 can sometimes be platform-specific/V6, caller-saved

according to the table, though sometimes considered callee-

saved depending on platform conventions). The table explic-

itly marks R4-R8, R10, R11 as ’Yes’ for Subroutine Preserved.

R4-R11: Locals, Callee Saves.

▶ r12 (IP): Intra-Procedure-call Scratch Register

• Holds intermediate values between procedures or during

complex calls.

• Caller-Saved (Not Preserved). R12: Scratch, Caller Saves.

▶ r13 (SP): Stack Pointer

• Points to the current top of the stack.

• Callee-Saved (Must be Preserved): Must have the same value

on exit as on entry, adjusted for any arguments pushed/popped

by the caller if applicable under specific ABI variants, but gen-

erally preserved by balancing PUSH/POP within the callee.

SP: Callee Saves.

▶ r14 (LR): Link Register

• Stores the return address on a BL instruction.

• Caller-Saved (Not Preserved): The callee modifies LR when

making nested calls and must save/restore the original LR if

it needs to return correctly to its own caller. LR: Link Reg, Caller Saves (effectively).

▶ r15 (PC): Program Counter

• Holds the address of the instruction being executed.

• Not typically modified directly except via branching instruc-

tions (B, BL, BX, POP {..., pc}). N/A for preservation.

Register Preservation Summary

A key distinction is whether the Caller or Callee is responsible for

preserving a register’s value across a subroutine call:

▶ Caller Saves (r0-r3, r12, r14(LR) if nested call occurs): Caller must

save if needed. Callee can overwrite freely.

▶ Callee Saves (r4-r11, r13(SP)): Callee must save/restore if used.

Caller assumes they are preserved.

Subroutine Examples and

Recursion 18

This chapter continues the discussion of subroutines by detailing pa-

rameter passing for different data sizes, providing practical examples

including nested calls and register swapping, and exploring the concept

and implementation of recursive functions.

Passing Arguments and Return Values

AAPCS argument passing rules.

The AAPCS specifies how arguments larger than 32 bits and additional

arguments beyond the first four are handled.

Argument Passing Rules

▶ 32-bit Arguments: r0, r1, r2, r3 for Arg1 to Arg4 respectively.

▶ 64-bit Arguments: Use register pairs. Arg1 in r1(MSB32):r0(LSB32),

Arg2 in r3(MSB32):r2(LSB32).

▶ 128-bit Arguments: Use r3(MSB32):r2:r1:r0(LSB32).

▶ Extra Arguments: Arguments beyond those fitting in r0-r3 are

pushed onto the stack by the caller before the BL instruction. The

caller is responsible for removing these arguments from the stack

(stack cleanup) after the subroutine returns. More than 4 args use the stack.

Return Value Rules

▶ 32-bit Return Value: Returned in r0.

▶ 64-bit Return Value: Returned in r1(MSB32):r0(LSB32).

▶ 128-bit Return Value: Returned in r3(MSB32):r2:r1:r0(LSB32).

Subroutine Examples

Example 1: Sum of Squares

Calculate 𝑅0 = 𝑅0
2 + 𝑅1

2
(Note: result returned in R0 per AAPCS).

; --- Caller ---

MOV R0, #3 ; Pass argument x=3 in R0

MOV R1, #4 ; Pass argument y=4 in R1

BL SSQ ; Call the subroutine SSQ

MOV R2, R0 ; Retrieve the result from R0 into R2 (Example uses R2)

B ENDL ; Branch to end

; ...

; --- Callee (Subroutine) ---

SSQ PROC ; Start of subroutine SSQ

MUL R2, R0, R0 ; R2 = R0*R0 (Uses scratch R2)

MUL R3, R1, R1 ; R3 = R1*R1 (Uses scratch R3)

ADD R2, R2, R3 ; R2 = (R0*R0) + (R1*R1)

MOV R0, R2 ; Place the final result into R0 for return

BX LR ; Return to caller

ENDP ; End of subroutine

This example follows AAPCS by using r0, r1 for arguments, r0 for the

return value, and scratch registers r2, r3 without saving/restoring them.

A detailed trace shows how PC and LR change during the call (BL SSQ

at 0x08000130 sets LR to 0x08000134) and return (BX LR sets PC to

0x08000134). Note on PC/LR LSB: Page 20 claims LR LSB is 0, page

21 claims it’s 1 for Thumb mode. Cortex-M only supports Thumb, so

BL sets LR LSB to 1, and BX LR expects LSB=1 to maintain Thumb state.

Instructions are fetched 4 bytes at a time (two 16-bit or one 32-bit). LR LSB=1 for Thumb state.

Example 2: Swapping Registers using Stack

Attempting to swap R1 and R2. Initial values R1=0x11111111, R2=0x22222222,

SP=0x20000200.

▶ Incorrect Attempt: PUSH {R1}, PUSH {R2}, POP {R1}, POP {R2}

does not swap the registers as intended because the individual POPs

retrieve values in the reverse order they were pushed individually.

▶ Correct Attempt: PUSH {R1, R2}, POP {R2, R1} *does* perform

the swap correctly. PUSH r1,r2, POP r2,r1 swaps.

• PUSH {R1, R2}: Stores R1 at lower address (0x200001F8), R2

at higher address (0x200001FC). SP points to R1’s location

(0x200001F8). Order stored: R1, then R2 based on register

number.

• POP {R2, R1}: Loads lowest register number (R1) from lowest

address (0x200001F8) first. Then loads R2 from next address

(0x200001FC). This achieves the swap.

Example 3: Nested Subroutine Call

Calculate 𝑅0 = 𝑅0
4

by calling a squaring function (SQ) twice from an

intermediate function (QUAD). Functions calling functions.

; --- Caller (MAIN) ---

MAIN PROC

MOV R0, #2 ; Input value = 2

BL QUAD ; Call QUAD function (calculates R0^4)

ENDL B ENDL ; Infinite loop after call

ENDP

; --- Intermediate Function (QUAD) ---

QUAD PROC

PUSH {LR} ; *** Save LR (return address to MAIN) ***
BL SQ ; Call SQ (R0 = R0^2)

; R0 now holds R0^2

BL SQ ; Call SQ again (R0 = (R0^2)^2 = R0^4)

; R0 now holds R0^4

POP {LR} ; *** Restore LR (return address to MAIN) ***

BX LR ; Return to MAIN

ENDP

; --- Squaring Function (SQ) ---

SQ PROC

MUL R0, R0, R0 ; R0 = R0 * R0

BX LR ; Return (to QUAD)

ENDP

The critical step here is that QUAD must save the LR it received from

MAIN before calling SQ, because the BL SQ instruction will overwrite

LR with the return address back to QUAD. PUSH {LR} and POP {LR}

achieve this preservation. A detailed trace shows SP, LR, PC, and register Must save LR for nested calls.

values changing through the nested calls, illustrating the stack usage

for LR preservation. For example, when MAIN calls QUAD (BL QUAD at

0x0800013C), LR becomes 0x08000140 (address of B ENDL). QUAD pushes

this LR value. When QUAD calls SQ (BL SQ at 0x08000150), LR becomes

0x08000154 (address of second BL SQ). SQ returns using this LR. After

the second BL SQ, QUAD pops the original LR (0x08000140) and uses it to

return to MAIN.

Recursion

A recursive function is one that calls itself to solve a problem.

Concept

▶ Self-Call: The function invokes itself, typically with a modified

input that moves closer to a base case.

▶ Base Case: A condition under which the function does not call

itself, stopping the recursion. Needed to stop recursion.

▶ Divide and Conquer: Often used for problems that can be broken

down into smaller instances of the same problem (sub-problems of

the same type).

Classic Example: Factorial

Calculating 𝑛! = 𝑛 × (𝑛 − 1) × · · · × 1.

▶ Recursive Definition:

• factorial(0) = 1 (Base Case)

• factorial(1) = 1 (Base Case)

• factorial(n) = n * factorial(n-1) for 𝑛 > 1 (Recursive

Step)

▶ C Implementation:

int factorial(int n) {

int f;

// Base case often uses n==1 or n<=1

if (n == 1) {

return 1;

} else {

// Recursive step

f = n * factorial(n - 1);

return f;

}

}

A call trace for ‘factorial(5)‘ shows the nested calls and return

values: 5fact(4) -> 4fact(3) -> 3fact(2) -> 2fact(1) -> returns 1 ->

returns 2 -> returns 6 -> returns 24 -> returns 120.

Recursion vs. Iteration

▶ Any recursive algorithm can be implemented iteratively (using

loops).

▶ Pros of Recursion: Can lead to code that more naturally reflects the

problem structure, potentially making it easier to write, program,

and debug. Often simpler code structure.

▶ Cons of Recursion: Generally slower due to function call overhead

(saving/restoring registers, managing stack frames) and consumes

more memory because each recursive call uses stack space. Uses more stack memory.

Assembly Implementation of Recursion

Requires careful management of the stack to save necessary context for

each recursive call. Stack management is key.

▶ Context Saving: Before making a recursive call (BL), the function

must push LR (its own return address) and any callee-saved regis-

ters (r4-r11) it modifies onto the stack. It also needs to preserve the

current value of arguments if they are needed *after* the recursive

call returns (e.g., the ’n’ in ‘n * factorial(n-1)‘).

▶ Context Restoring: After the recursive call returns, the function

must pop the saved registers and LR (often popped directly into

PC) to calculate its own result and return correctly.

Factorial Assembly Code

Assembly implementation for calculating factorial(n), example call with

n=3.

; Input: R0 = n

; Output: R0 = n!

factorial PROC

PUSH {r4, lr} ; Save R4 (to store current n) and LR

MOV r4, r0 ; Move n into R4 (callee-saved)

CMP r4, #1 ; Compare n with 1 (Base case check)

BNE NZ ; If n != 1, branch to recursive step

; Base Case (n=1)

MOVS r0, #1 ; Result is 1

; Use B loop_end or similar name to skip MUL and go to POP

B loop_end ; Branch to end to pop and return

NZ: ; Recursive Step (n > 1)

SUBS r0, r4, #1 ; Set argument for recursive call: r0 = n - 1

BL factorial ; Recursive call: factorial(n-1). Result returns in R0.

; After returning, R0 = (n-1)!, R4 still holds n

MUL r0, r4, r0 ; Calculate final result: n * (n-1)!

loop_end: ; Common exit point (label used in BNE path was ’loop’)

; Renaming for clarity. In doc, target of BNE is NZ,

; Base case MOVS r0, #1 is followed by B loop,

; where loop is the label for POP {r4, pc}.

POP {r4, pc} ; Restore R4 and pop saved LR into PC to return

ENDP

This code shows saving r4 (to preserve ‘n‘ across the recursive call) and

lr. It checks the base case (n == 1). If not the base case, it calls itself

with n-1, then multiplies the result by the saved ‘n‘ (r4). The POP {r4,

pc} restores the register and performs the return in one instruction. A POP r4, pc restores and returns.

memory diagram trace shows how the stack (sp), lr, and r4 change

during the execution for ‘factorial(3)‘. The stack grows downwards as

PUSH occurs for each call level, storing r4 and lr, and shrinks upwards as

POP restores them on return.

Interrupts 19

Motivations for Interrupts

Why use interrupts?

Interrupts let embedded systems react to external events immediately—without

burning CPU cycles in tight polling loops—and form the backbone of

pre-emptive multitasking.

▶ Timely event notification – no wasted polling.

▶ Efficiency – the CPU or MCU can sleep until needed, saving power.

▶ Multitasking support – an RTOS tick, DMA completion, sensor-ready

GPIO, . . .

Related concepts

▶ Multitasking: One core, many tasks by rapid switching.

▶ Multithreading: Independent execution branches inside a task.

▶ Multi-core: True parallelism on separate CPU cores.

Interrupts vs. Exceptions

External vs. internal

▶ Interrupt: Event outside the core (timer, UART, GPIO . . .).

▶ Exception: Event inside the core (faults, SVC, . . .).

ARM Cortex-M documentation places both under the umbrella term “excep-
tion”.

Functions of an Interrupt System

▶ Detect asynchronous events.

▶ Finish the current instruction, then branch to the correct ISR.

▶ Automatically save context, run the ISR, then restore context.

▶ Allow per-source enable/disable and global masking.

▶ Resolve simultaneous requests by a priority scheme.

Basic Interrupt Flow

Lifecycle

1. A peripheral asserts an IRQ line.

2. CPU completes the current instruction → checks masks/priorities.

3. Vector fetch → program counter jumps to the matching ISR.

4. ISR handles the event.

5. BX LR (with EXC_RETURN) restores state and resumes.

General Interrupt Hardware Logic & Pending

State

Enabling / masking

Interrupt delivery involves three gates: device-level enable, NVIC/global

mask, and priority logic. If any gate blocks the request it becomes pending
(ISPR/ICPR remember it).

Peripheral IRQ

(edge/level)

Device

enable

Global

mask 𝐼
CPU core

AND AND

Interrupt Priorities

Multiple IRQs

▶ Intrinsic: Position in the Interrupt Vector Table (IVT).

▶ Configurable: Software writes NVIC IPR fields.

▶ Higher-priority ISRs may pre-empt lower ones (nesting).

Interrupt Vector Table (IVT)

Map of handlers

The IVT normally starts at 0x00000000:

Address Priority Type Acronym Description

0x0000 0000 – – – Initial MSP (Main Stack Pointer)

0x0000 0004 −3 fixed Reset_Handler Reset entry

0x0000 0008 −2 fixed NMI_Handler Non-maskable interrupt

0x0000 000C −1 fixed HardFault_Handler All fault escalation

0x0000 0010 cfg settable MemManage_Handler Memory-management fault

0x0000 0014 cfg settable BusFault_Handler Bus fault (prefetch/data)

0x0000 0018 cfg settable UsageFault_Handler Usage fault (undef. instr., div 0,

. . .)

0x0000 002C cfg settable SVC_Handler Supervisor call (SVC)

0x0000 0030 cfg settable DebugMon_Handler Debug monitor

0x0000 0038 cfg settable PendSV_Handler Pendable service request

0x0000 003C cfg settable SysTick_Handler System-tick timer

IRQ # Address Handler name (CMSIS)

0 0x0000 0040 WWDG_IRQHandler

1 0x0000 0044 PVD_PVM_IRQHandler

6 0x0000 0058 EXTI0_IRQHandler

7 0x0000 005C EXTI1_IRQHandler

11 0x0000 006C DMA1_Channel1_IRQHandler

Table 19.1: Example peripheral-interrupt

vectors (Cortex-M)

While an ISR is running, PSR[8:0] holds ExceptionNumber = 16+IRQn.

Processor Modes & Stack Pointers

MSP vs. PSP

▶ Thread Mode: normal code; uses MSP unless CONTROL[1]=1.

▶ Handler Mode: ISR context; always privileged; always MSP.

▶ Separating OS (MSP) and user (PSP) stacks prevents corruption.

Automatic Stacking / Unstacking

On exception entry the core pushes

R0 R1 R2 R3 R12 LR PC PSR︸ ︷︷ ︸
32 bytes

on the current stack (full-descending). A BX LR using an EXC_RETURN

value reverses the process.

Interrupt Flow Visualisation

Interrupt Numbering Scheme

System vs. peripheral

Cortex-M supports up to 256 interrupt sources:

▶ System exceptions (–16 to –1)

▶ Peripheral IRQs (0 to 239)

-16 -15 -14 -1 0 239

System Peripheral

CMSIS IRQn vs. PSR exception number

PSR_Exception = 16 + IRQn (e.g. SysTick_IRQn = -1 → PSR = 15).

NVIC Interrupt-Control Registers

Per-IRQ control

Action Register(s) What to do

Enable IRQ ISER[n] Write 1 to bit 𝑛 mod 32

Disable IRQ ICER[n] Write 1 to bit 𝑛 mod 32

Set Pending ISPR[n] Software-pend an IRQ

Clear Pending ICPR[n] De-pend an IRQ

Read Active IABR[n] Bit 1 → ISR currently running

Trigger (SW) STIR Write IRQ number to fire

Debugger Snapshot (SVC example)

Mode: Handler (privileged)

SP: MSP=0x2000 05C8

LR: 0xFFFFFFF9 (EXC_RETURN, “return to MSP”)

xPSR: 0x0100 000B → ExceptionNumber = 11 (SVC)

1 SVC_Handler:

2 CPSID I ; mask further IRQs

3 PUSH {r4-r8, lr} ; manual save

4 ; ... handler work ...

5 POP {r4-r8, lr}

6 CPSIE I

7 BX lr ; auto-restore and resume

CMSIS IRQn_Type extracts (STM32L476)

/* ----- Core exceptions --- */

NonMaskableInt_IRQn = -14, /* 2 Non-maskable interrupt */

HardFault_IRQn = -13, /* 3 Hard-fault interrupt */

MemoryManagement_IRQn = -12, /* 4 MPU fault */

BusFault_IRQn = -11, /* 5 Bus fault */

UsageFault_IRQn = -10, /* 6 Usage fault */

SVCall_IRQn = -5, /* 11 Supervisor call */

PendSV_IRQn = -2, /* 14 Pendable service */

SysTick_IRQn = -1, /* 15 System tick */

/* ----- Peripheral interrupts ------------------------------------ */

WWDG_IRQn = 0, /* Window watchdog */

PVD_PVM_IRQn = 1, /* PVD / PVM monitor */

EXTI0_IRQn = 6, /* External line 0 */

DMA1_Channel1_IRQn = 11, /* DMA1 channel 1 */

Enabling Peripheral Interrupts 20
ISER / ICER

Most Cortex-M MCUs expose three 32-bit ISER registers for set-enable
and matching ICER registers for clear-enable. The 𝑛-th interrupt (IRQn) is

mapped to bit 𝑛 mod 32 in word 𝑛/32. Writing a 1 enables (or disables)

that source; writes of 0 are ignored.

▶ High-level API –NVIC_EnableIRQ(IRQn)/NVIC_DisableIRQ(IRQn)

do the math for you.

▶ Bare-metal – NVIC->ISER[IRQn»5]=1«(IRQn&0x1F); (and analo-

gously for ICER).

IRQ Register Blocks

ISPR / IABR

Besides enable bits the NVIC suppliesISPR/ICPR (software-pend/de-pend)

and IABR (live active flags) so firmware or a debugger can inspect or force

delivery.

Access Macros

Listing 20.1: Word/bit helpers

1 #define NVIC_REG(base,irq) (*((volatile uint32_t*)(base)+((irq)

>>5)))

2 #define NVIC_BIT(irq) (1U << ((irq) & 0x1F))

3

4 /* Enable Timer 7 (IRQ 44) */

5 NVIC_REG(NVIC_ISER_BASE,44) = NVIC_BIT(44);

Interrupt Priority Model

Lower = stronger

Reset, NMI and HardFault have fixed priorities (−3 . . . −1). All other ex-

ceptions share an eight-bit priority field split into pre-empt and sub-priority
parts. Fewer pre-empt bits means finer in-group ordering, and vice-versa.

𝑛 Pre-empt bits Sub bits

0 0 4

1 1 3

2 (default) 2 2

3 3 1

4 4 0

Table 20.1: Priority grouping with

NVIC_SetPriorityGrouping()

Example: with grouping 2 the callNVIC_SetPriority(EXTI0_IRQn, 0xF)

writes 0xF0 into IP[6] (4 MSBs used).

Masking Critical Sections

PRIMASK / BASEPRI

▶ PRIMASK=1 – blocks every IRQ except NMI.

▶ FAULTMASK=1 – blocks also HardFault.

▶ BASEPRI=X – blocks all priorities numerically ≤ 𝑋.(Remember: 0 =

unmasked.)

1 MOV R0,#(5<<4) ; mask prio 0.5

2 MSR BASEPRI,R0

3 ; ---- timing-critical code ----

4 MOV R0,#0

5 MSR BASEPRI,R0

SysTick System Timer

24-bit down-counter

SysTick produces periodic interrupts for OS ticks, delays or general

time-keeping. A 24-bit down-counter reloads the user value in LOAD on

zero, sets COUNTFLAG and (if TICKINT=1) issues an exception.

Key registers

SysTick_CTRL CLKSOURCE, TICKINT, ENABLE

flags

SysTick_LOAD 24-bit reload value (0 → off)

SysTick_VAL Read: current count; Write:

clear+reload

SysTick_CALIB TENMS (10 ms reference) RO

SysTick Initialisation Example

1 void SysTick_Init(uint32_t ticks) {

2 SysTick->CTRL = 0; // off

3 SysTick->LOAD = ticks - 1; // period

4 NVIC_SetPriority(SysTick_IRQn,

5 (1 << __NVIC_PRIO_BITS) - 1);// lowest prio

6 SysTick->VAL = 0; // clear count

7 SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |

8 SysTick_CTRL_TICKINT_Msk |

9 SysTick_CTRL_ENABLE_Msk; // go

10 }

A companionSysTick_Handlerusually decrements a globalvolatile TimeDelay

for blocking delay loops.

Reload-Value Calculation

80 MHz → 10 ms

With an 80 MHz core clock a 10 ms tick demands

Reload = 80 MHz × 10 ms − 1 = 800,000 − 1 = 799 999.

Debugger Snapshot (Timer 7)

Mode: Handler

LR: 0xFFFFFFF9

xPSR: ExceptionNumber = 60 (TIM7_IRQn)

Quick-Reference Table

API Purpose Notes

NVIC_EnableIRQ Turn on IRQ Safe wrapper

NVIC_SetPriority Set prio 4 MSBs significant

__set_BASEPRI(X) Mask prio ≤ 𝑋 0 = unmask

SysTick_LOAD Period 24 b max

Takeaways

▶ Three NVIC layers—enable, pending, active—give full visibility

over each source.

▶ Priority grouping splits 8 bits into pre-empt versus tiebreak sub-priority.

▶ PRIMASK, FAULTMASK and BASEPRI implement coarse to fine

critical-section control.

▶ SysTick is a self-contained 24-bit timer ideal for RTOS heartbeats

and busy-wait delays.

GPIO Overview

Zero-wait pin access

With memory-mapped I/O every peripheral register lives in the same

32-bit address space as code and data, so ordinary LDR/STR instructions

toggle pins in a single cycle — no special IN/OUT op-codes.

▶ Uniform API – pointers, structs, and bit-fields work.

▶ Speed – reads/writes go over the fast AHB/APB fabric.

▶ Simplicity – C code looks like plain memory access.

Cortex-M4 Address Map

Top-level regions

Flash starts at0x00000000, SRAM at0x20000000, peripherals at0x40000000,

and NVIC/SysTick at 0xE0000000.

STM32L4 GPIO Windows

Port blocks

Port Base

A 0x48000000

B 0x48000400

C 0x48000800

D 0x48000C00

E 0x48001000

F–H . . .

Table 20.2: Base addresses (1 KB each)

Each block exposes 12 registers (48 bytes).

GPIO Register Layout

Core set

MODER, OTYPER, OSPEEDR, PUPDR, IDR, ODR, BSRR, LCKR, AFR[2], BRR, ASCR.

ODR – Output Data Register

Write to drive pins

Address 0x48000014. Each bit reflects the logic level on the matching

GPIO pin when the port is configured as output.

Listing 20.2: Set PB14 high directly

1 *((uint32_t *)0x48000014) |= 1UL << 14; /* set PB14 high */

Typed Access in C

Listing 20.3: Minimal GPIO typedef

1 typedef struct {

2 volatile uint32_t MODER;

3 volatile uint32_t OTYPER;

4 volatile uint32_t OSPEEDR;

5 volatile uint32_t PUPDR;

6 volatile uint32_t IDR;

7 volatile uint32_t ODR;

8 volatile uint32_t BSRR;

9 volatile uint32_t LCKR;

10 volatile uint32_t AFR[2];

11 volatile uint32_t BRR;

12 volatile uint32_t ASCR;

13 } GPIO_TypeDef;

14

15 #define GPIOA ((GPIO_TypeDef *)0x48000000)

16

17 GPIOA->ODR |= 1UL << 14; /* toggle PA14 */

Clock Enable

RCC_AHB2ENR

Before any pin manipulation you must gate the port clock:

1 RCC->AHB2ENR |= (1U << 1); /* GPIOB clock on */

Bit 1 is GPIOBEN.

Pin Direction Setup

MODER

Listing 20.4: Configure Pin 2 output on

Port B

1 /* Pin 2 output on port B */

2 GPIOB->MODER &= ~(3UL << 4); /* clear bits 5:4 */

3 GPIOB->MODER |= (1UL << 4); /* set 01 = output */

Each pin consumes two bits: 00 input, 01 output, 10 alternate, 11 analog.

I/O Pad Anatomy

Push-pull vs open-drain

Key controls: push-pull/open-drain (OTYPER), drive strength (OSPEEDR),

pull-ups/downs (PUPDR).

Example – Red LED on PB2

Discovery board

1. Enable GPIOB clock.

2. Set PB2 to output push-pull.

3. Write 1 to bit 2 of ODR. High = LED on, Low = off.

GPIOB->ODR ^= 1UL << 2; toggles the LED.

Key Takeaways

▶ GPIO ports are ordinary memory; bit-twiddling uses standard C.

▶ Clock gating via RCC_AHB2ENR is mandatory.

▶ MODER, OTYPER, and PUPDR fully define pin behaviour.

▶ BSRR sets/resets outputs atomically — handy in ISRs.

GPIO Output Type Register (OTYPER)

Push-pull or open-drain

OTYPER has one bit per pin (bits 0-15); 0 selects push-pull, 1 selects

open-drain.

Listing 20.5: Set PB2 to push-pull

1 /* PB2 push-pull */

2 GPIOB->OTYPER &= ~(1UL << 2);

Push-pull vs. Open-drain

▶ Push-pull actively drives high or low.

▶ Open-drain only sinks; logic 1 = Hi-Z.

Bit value Push-pull Open-drain

1 High Hi-Z

0 Low Low

Table 20.3: Output truth table

GPIO Output Speed (OSPEEDR)

Rise/fall slew

Four settings: low, medium, fast, very high. Choose the lowest speed that

meets timing.

Slew Rate Formula

SlewRatemax =
Δ𝑉

Δ𝑡

GPIO Output Data Register (ODR)

Address offset 0x14; one bit per pin.

Listing 20.6: Set PB2 high

1 GPIOB->ODR |= 1UL << 2; /* set PB2 high */

Red LED Example (PB2)

1. Enable GPIOB clock via RCC->AHB2ENR.

2. Configure PB2 as output push-pull.

3. Write 1 to bit 2 of ODR to light the LED.

GPIOB->ODR ^= 1UL << 2; toggles the LED.

GPIO Initialisation Steps

▶ Enable peripheral clock.

▶ Configure MODER, OTYPER, OSPEEDR, PUPDR as needed.

▶ Use BSRR for atomic set/reset inside ISRs.

Minimal GPIO TypeDef

Listing 20.7: Minimal GPIO Typedef for

GPIOB

1 typedef struct {

2 volatile uint32_t MODER;

3 volatile uint32_t OTYPER;

4 volatile uint32_t OSPEEDR;

5 volatile uint32_t PUPDR;

6 volatile uint32_t IDR;

7 volatile uint32_t ODR;

8 volatile uint32_t BSRR;

9 volatile uint32_t LCKR;

10 volatile uint32_t AFR[2];

11 } GPIO_TypeDef;

12

13 #define GPIOB ((GPIO_TypeDef *)0x48000400)

Assembly Pin Toggle

1 GPIOA_BASE EQU 0x48000000

2 GPIO_ODR EQU 0x14

3

4 LDR r7, =GPIOA_BASE

5 LDR r1, [r7, #GPIO_ODR]

6 ORR r1, r1, #(1 << 14)

7 STR r1, [r7, #GPIO_ODR]

GPIO Input Path

Set pin to input (MODER = 00) and choose pull-up (01) or pull-down (10)

in PUPDR.

Pull-up / Pull-down Logic

Floating inputs read undefined; pulls give a defined idle level.

Joystick Example

Discovery-board joystick on PA0-PA4 uses input mode with pull-ups;

pressing shorts the line to ground.

Key Points

▶ OTYPER selects push-pull or open-drain per pin.

▶ Output speed (slew) trades EMI for timing head-room.

▶ Use ODR for simple writes, BSRR for atomic writes.

▶ Pull-ups / pull-downs stabilize high-impedance inputs.

GPIO Examples 21

Schmitt-Trigger Inputs

Noise immunity

Digital inputs on STM32L4 include an on-die Schmitt trigger: slow,

noisy analog edges are squared up before the logic block. Two distinct

thresholds (TH, TL) provide hysteresis.

Clock Enable

RCC_AHB2ENR

RCC->AHB2ENR = RCC_AHB2ENR_GPIOAEN;|

GPIO Input Recipe

1. Clear the two MODER bits: input mode (00).

2. Choose pulls in PUPDR if needed (00 none, 01 PU, 10 PD).

3. Read pin state in IDR.

Listing 21.1: Read PA0 joystick press

1 uint32_t pressed;

2 RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN; /* clock */

3 GPIOA->MODER &= ~3UL; /* PA0 input */

4 GPIOA->PUPDR &= ~3UL; /* no pulls */

5 pressed = (GPIOA->IDR & 1UL) != 0;

Button Debouncing

Glitches

A mechanical push-button bounces for ∼5-20 ms. Hardware RC or

firmware state-machine filters spikes.

Motor Types

▶ Servo – closed loop, high torque, feedback.

▶ Stepper – open loop, holds discrete steps, cheap.

Stepper Motor Basics

Step angle

𝜃step =
360
◦

steps per rev

=
360
◦

𝑃 × 𝑇
𝑃 = stator phases, 𝑇 = rotor pole pairs.

Stepping Modes

Wave energize one coil at a time – lowest torque.

Full energize two coils – full torque, 200 steps/rev typical.

Half alternate 1/2 coils – doubles step count, smoother.

Wave-Step Sequence (4-wire Bipolar)

Full-Step Control Code

Listing 21.2: Clockwise full steps

1 static const uint8_t FS[4] = {0x48, 0x88, 0x84, 0x44};

2

3 void FullStepR(int n){

4 for(int rev=0; rev<n; ++rev){

5 for(int i=0; i<4; ++i){

6 GPIOB->ODR &= ~(0x00CC); /* clear */

7 GPIOB->ODR |= FS[i]; /* set */

8 delay_us(1800);

9 }}}

Half-Step Control Code

Listing 21.3: Counter-clockwise half

steps

1 static const uint8_t HS[8] =

2 {0x84,0x04,0x44,0x40,0x48,0x08,0x88,0x80};

3

4 void HalfStepL(int n){

5 for(int rev=0; rev<n; ++rev){

6 for(int i=7; i>=0; --i){

7 GPIOB->ODR &= ~(0x00CC);

8 GPIOB->ODR |= HS[i];

9 delay_us(900);

10 }}}

Micro-Stepping Idea

Sine-cosine

Apply sine current to phase A, cosine to phase B: smoother torque and

finer positioning (up to 256𝜇steps).

Key Points

▶ Enable GPIO clock before configuring ports.

▶ Use input mode plus pulls for buttons / keypads.

▶ Debounce either in hardware or with a timer.

▶ Steppers: choose wave, full, half, or micro-stepping per need.

▶ Micro-stepping drives coils with sine-cosine DAC/PWM for quiet

motion.

Timer Overview

▶ Free-running 16-bit or 32-bit counter, clocked independently of the

CPU.

▶ Core functions: input-capture, output-compare, PWM generation,

one-pulse mode.

Clock Chain

Prescaler (PSC) divides the bus clock to fCNT. Counter counts up/down

between 0 and ARR. When the counter matches CCRx the compare circuitry

sets OCREF, producing a waveform or interrupt.

Key Registers

PSC Prescaler (16-bit) – reloads on update event

ARR Auto-reload value – timer period

CCR1-4 Compare/Capture register per channel

RCR Repetition counter, adds extra cycles before update

Output-Compare Modes

1. 000 Frozen (no change)

2. 001 Set high when CNT == CCR

3. 010 Set low when CNT == CCR

4. 011 Toggle on match

5. 100 Force low, 101 Force high.

Counting Modes

Edge-aligned Up-count or down-count; update on overflow/underflow.

Center-aligned Up then down; period = 2 × ARR × 𝑇CLK.

PWM Basics

Period = (ARR + 1)𝑇CLK , Duty =
CCR

ARR + 1

▶ Mode 1 (low-true): output high while CNT < CCR.

▶ Mode 2 (high-true): output low while CNT < CCR.

Left / Right / Center Alignment

▶ Left-aligned: rising edges align at CNT = 0.

▶ Right-aligned: falling edges align at CNT = ARR.

▶ Center-aligned: symmetric about mid-point; reduced harmonics.

ARR Preload and RCR

Setting ARPE=1 stores writes in a shadow register, then transfers to ARR

on the next update event for glitch-free period changes. RCR inserts

(RCR + 1) repetitions before each update, useful for burst PWM.

Output Polarity & Enables

▶ CCxE / CCxNE bits enable main or complementary output.

▶ CCxP selects active-high or active-low polarity.

▶ MOE, OSSI, OSSR control global output enable and safe states.

Input-Capture

▶ Detects edge time-stamps on a pin; choose rising, falling, or both.

▶ Optional digital filter removes spurious glitches.

Pulse-Width ISR Skeleton

1 volatile uint32_t pulse, last;

2 volatile uint8_t level;

3

4 void TIM4_IRQHandler(void){

5 uint32_t now;

6 if (TIM4->SR & TIM_SR_CC1IF){ /* capture */

7 now = TIM4->CCR1;

8 level = 1 - level; /* toggle */

9 if (level == 0) /* falling edge */

10 pulse = now - last; /* width */

11 last = now;

12 }

13 if (TIM4->SR & TIM_SR_UIF) /* overflow */

14 TIM4->SR &= ~TIM_SR_UIF;

15 }

Ultrasonic Distance Example

Round-trip distance:

𝑑 =
𝑡𝑣

2

with 𝑣 ≈ 343 m/s

Practical conversion: 𝑑 [cm] = 𝑡 [𝜇s]/58.82.

Key Takeaways

▶ PSC and ARR set base frequency; CCR sets duty or compare point.

▶ Edge-aligned PWM aligns rising or falling edges; center-aligned

halves EMI.

▶ ARPE prevents glitches when updating ARR on-the-fly.

▶ Input-capture plus overflow logic measures pulse width and fre-

quency.

Metrics and Acknowledgments

▶ Pages - 104

▶ Words - 12805

▶ Average words/page - 123

▶ Figures / Tables - 46/41

▶ LaTeX source lines - 5262

Acknowledgments

▶ Prof. Chang — course instruction.

▶ Prof. Bell — lab organization and support.

▶ Overleaf — online LaTeX platform used for note-taking and LLM-assisted

shorthand expansion (TikZ diagrams, etc.).

▶ Various online sources for embedded-systems imagery; diagrams

otherwise authored by the note-taker.

	Embedded Systems
	Course Overview
	Introduction
	ARM and Microprocessor Basics
	Memory Architecture
	Memory, I/O, and Instruction Excecution
	Instruction Behavior and Memory Layout
	Memory (continued)
	Data Representation
	Program Status Register
	Pointer Reference and Dereference
	ARM Instruction Set Architecture
	Assembly Directives
	Advanced Operations
	ARM Arithmetic and Logic Instructions
	Data Manipulation and Memory Access
	Assembly Control Flow: Loops and Conditionals
	Subroutines, Stacks, and Calling Conventions
	Subroutine Examples and Recursion
	Interrupts
	Enabling Peripheral Interrupts
	GPIO Examples

